statistical physics of loops on lattices
play

Statistical Physics of Loops on Lattices John Chalker Physics - PowerPoint PPT Presentation

Statistical Physics of Loops on Lattices John Chalker Physics Department, Oxford University Work with: Adam Nahum (Oxford) Miguel Ortu no, Pablo Serna & Andres Somoza (Murcia, Spain) PRL 107, 110601 (2011), PRE 85, 031141 (2012), PRB


  1. Statistical Physics of Loops on Lattices John Chalker Physics Department, Oxford University Work with: Adam Nahum (Oxford) Miguel Ortu˜ no, Pablo Serna & Andres Somoza (Murcia, Spain) PRL 107, 110601 (2011), PRE 85, 031141 (2012), PRB 88, 134411 (2013) PRL 111, 100601 (2013) & forthcoming

  2. Loop models Phase transition Continuum picture short loops extended loops p coupling constant Lattice formulation Fully-packed loops with n colours on lattice of (directed) links

  3. Overview Loop models on lattices & 3D classical stat mech Transitions between short-loop phases and extended phases Continuum description as CP n − 1 sigma model Loop length distribution in extended phase Loop models & SU(n) spin systems in (2+1) dimensions Valence bond liquid to N´ eel transitions

  4. Loop models and non-intersecting random curves Random curves appear in many contexts 2D random curves – zero-lines of random scalar field Lattice version – percolation hulls

  5. Loop models and non-intersecting random curves 3D random curves – zero-lines of random 2-cpt field Lattice version – tricolour percolation Cf. cosmic strings, optical vortices, liquid crystal disclinations . . .

  6. Phase transitions in loop models configs p n p (1 − p ) n 1 − p n n loops Z = � To define model: specify lattice, link directions and nodes

  7. Phase transitions in loop models configs p n p (1 − p ) n 1 − p n n loops Z = � To define model: specify lattice, link directions and nodes 2D model Sample configuration

  8. Phase transitions in loop models configs p n p (1 − p ) n 1 − p n n loops Z = � To define model: specify lattice, link directions and nodes Configuration of 3D model Lattice designed so that: p = 0 only short loops p = 1 all curves extended � Alternative has symmetry � p ↔ [1 − p ] under

  9. Phase diagrams 3D Manhattan lattice 3D L-lattice

  10. Translating between loops and spins Extended vs local degrees of freedom Background Recall high-temperature expansion for Ising model Z = Tr e βJ � � ij � σ i σ j σ i = ± 1 � ∝ Tr (1 + σ i σ j tanh βJ ) � ij � � [tanh βJ ] loop length ≡ J β tanh 1 loops

  11. Local Description and Continuum Theory configs p n p (1 − p ) n 1 − p n n loops Z = � • Introduce n component complex unit vector � z l on each link l z l e −S � • Choose action S so that Z = N � d � l reproduces loop model in ‘high T’ expansion • Identify symmetries of S

  12. Local Description and Continuum Theory configs p n p (1 − p ) n 1 − p n n loops Z = � • Introduce n component complex unit vector � z l on each link l z l e −S � • Choose action S so that Z = N � d � l reproduces loop model in ‘high T’ expansion • Identify symmetries of S Require A D � � e −S = � z † z † z † z † p ( � A · � z B )( � C · � z D ) + (1 − p )( � A · � z D )( � C · � z B ) nodes C B Expand � nodes [ . . . ] n per loop via loops contribute factors ℓ z ∗ β 2 z ∗ β 2 . . . z ∗ γ L z γ � z ℓ z α ∝ δ αβ � � z L z ∗ α 1 z α � d � d � z 1 . . . d � α,β,...γ 1 ℓ

  13. Local Description and Continuum Theory configs p n p (1 − p ) n 1 − p n n loops Z = � • Introduce n component complex unit vector � z l on each link l z l e −S � Z = N � • Choose action S so that d � l reproduces loop model in ‘high T’ expansion • Identify symmetries of S z l → e i ϕ l � � z l Find: (i) local gauge invariance z l → U � U ∈ SU ( n ) � z l (ii) global rotational invariance CP(n-1) σ -model Continuum limit: Q αβ = z α z ∗ β − δ αβ /n S = 1 d d r tr( ∇ Q ) 2 � with 2 g

  14. Phase transitions in CP n − 1 model Q ≡ zz † − 1 /n Gauge-invariant degrees of freedom: ‘spins’ Statistical mechanics: D Q . . . e −S � S = 1 � d d r tr( ∇ Q ) 2 � . . . � ∝ & � D Qe −S 2 g Expect two phases for d > 2 : Small g – Long range order Q ( r ) = Q 0 + δQ ( r ) fluctuations δQ ( r ) small and Gaussian Large g – Disorder: no long-range correlations in Q ( r )

  15. Phase transitions in CP n − 1 model Q ≡ zz † − 1 /n Gauge-invariant degrees of freedom: ‘spins’ � Q 1 , 2 ( 0 ) Q 2 , 1 ( r ) � ∝ G ( r ) – prob. 0 & r on same loop Correlations

  16. Phase transitions in CP n − 1 model Q ≡ zz † − 1 /n Gauge-invariant degrees of freedom: ‘spins’ � Q 1 , 2 ( 0 ) Q 2 , 1 ( r ) � ∝ G ( r ) – prob. 0 & r on same loop Correlations Justification: return to lattice model A D � � e −S = � z † z † z † z † A · � C · � z D ) + (1 − p )( � A · � C · � p ( � z B )( � z D )( � z B ) nodes C B Expand � nodes [ . . . ] n per loop via loops contribute factors 2 z ∗ β 2 . . . z ∗ γ L z γ ℓ z ∗ β � � z L z ∗ α 1 z α � z ℓ z α ∝ δ αβ � d � z 1 . . . d � d � 1 ℓ α,β,...γ 1 0 z ∗ 2 r z ∗ 1 Insert z 1 0 and z 2 r into averages r ℓ z ∗ β z ℓ z α ℓ z ∗ 1 ℓ z 2 ∝ δ α 1 δ 2 β � d � and use ℓ 0 2

  17. Phase transitions in CP n − 1 model Q ≡ zz † − 1 /n Gauge-invariant degrees of freedom: ‘spins’ � Q αβ ( 0 ) Q βα ( r ) � ∝ G ( r ) – prob. 0 & r on same loop Correlations Paramagnetic phase G ( r ) ∼ 1 r e − r/ξ — only finite loops Critical point d f = 5 − η G ( r ) ∼ r − (1+ η ) — fractal loops 2 Ordered phase G ( r ) ∼ r − 2 — Brownian loops escape to infinity Order parameter – prob. link lies on extended trajectory

  18. Testing CP n − 1 description: n = 2 Mapping to Heisenberg model for n = 2 via S α = z † σ α z Winding number Scaling collapse with vs coupling const Heisenberg exponents ν = 0 . 708(6) γ = 1 . 39(1) Fitted exponents Consistent with best estimates for ν = 0 . 7112(5) γ = 1 . 3960(9) classical Heisenberg model

  19. Putting the CP n − 1 description to use Computing the loop length distribution Express moments as averages B Example: Prob . for loop to pass through A, B & C A ∝ � Q 1 , 2 ( A ) Q 2 , 3 ( B ) Q 3 , 1 ( C ) � C Hence A m � � d 3 r 1 . . . d 3 r m � Q 1 , 2 ( r 1 ) . . . Q m, 1 ( r m ) � = � ℓ m k � n ( m − 1)! loops k (need ‘replica trick’ for m > n )

  20. Evaluating correlators in the ordered phase � Q 1 , 2 ( r 1 ) . . . Q m, 1 ( r m ) � Want – for example Long range order ⇒ Q ( r ) = Q 0 + δQ ( r ) fluctuations δQ ( r ) small and correlations decay with separation = B ( z α z ∗ β − δ αβ ) independent of position order parameter Q αβ 0

  21. Features of loop length distribution Consider system of size L ≡ L d in extended phase Two components to loop population: • loops of finite length ℓ occupy fraction 1 − f of links • loops of length ℓ ∼ L occupy fraction f of links

  22. Features of loop length distribution Consider system of size L ≡ L d in extended phase Two components to loop population: • loops of finite length ℓ occupy fraction 1 − f of links • loops of length ℓ ∼ L occupy fraction f of links Correspondence in σ -model Q ( r ) = Q 0 + δQ ( r ) • Length distribution of finite loops from fluctuations of δQ ( r ) • Length distn of extended loops from avge on orientations of Q 0 fraction f ≡ size of order parameter Q 0

  23. Results for moments Putting everything together Q αβ ( r ) = B ( z α z ∗ β − δ αβ ) + δQ αβ ( r ) using � 1 � m � � � ℓ m d 3 r 1 . . . d 3 r m � Q 1 , 2 ( r 1 ) . . . Q m, 1 ( r m ) � k � n ( m − 1)! = A loops k � m � B L �| z 1 | 2 | z 2 | 2 . . . | z m | 2 � ≈ n ( m − 1)! A � m n Γ( n )Γ( m ) � B L = A Γ( n + m ) ( f L ) m n Γ( n )Γ( m ) ≡ Γ( n + m )

  24. Loop length distribution Consider system of size L ≡ L d in extended phase Select link at random Length distribution P link ( ℓ ) ≡ L − 1 ℓ � � k δ ( ℓ − ℓ k ) � of loop passing through this link? Find  Cℓ − d/ 2 1 ≪ ℓ ≪ L 2  P link ( ℓ ) = � n − 1 � L 2 ≪ ℓ ≤ f L n ℓ 1 −  L f L

  25. Testing CP n − 1 description: extended phase Length distribution of long loops Results from simulations � n − 1 � P link ( ℓ ) = n 1 − ℓ L f L Derived from average over orientations of CP n − 1 order parameter

  26. Poisson-Dirichlet distribution For M random variables y i ≥ 0 with constraint � M i =1 y i = 1 Dirichlet distribution Γ( Mα ) [Γ( α )] M ( y 1 , y 2 . . . y M ) α − 1 d y 1 . . . d y M − 1 Poisson-Dirichlet: limit M → ∞ , α → 0 with θ ≡ Mα fixed. Order loop lengths ℓ 1 ≥ ℓ 2 ≥ . . . and normalise x i = ℓ i / ( f L ) From calculation of moments find x i ’s are PD with parameter θ = n for directed loops, and θ = n/ 2 for undirected loops

  27. Why so simple and universal? Stability of distribution under split-merge processes — if disconnection/reconnection determined only by loop length Long loops cross sample many times ⇒ mean field regime

  28. Summary Loop models are discretisation of • Classical CP n − 1 sigma models • Quantum SU ( n ) antiferromagnets Features • Phase transitions between short-loop and extended phases • Simple route to calculate length distribution of long loops

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend