statistical image models
play

Statistical Image Models Eero Simoncelli Howard Hughes Medical - PowerPoint PPT Presentation

Statistical Image Models Eero Simoncelli Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute of Mathematical Sciences New York University Photographic Images Diverse specialized structures:


  1. Joint densities adjacent near far other scale other ori 150 150 150 150 150 100 100 100 100 100 50 50 50 50 50 0 0 0 0 0 � 50 � 50 � 50 � 50 � 50 � 100 � 100 � 100 � 100 � 100 � 150 � 150 � 150 � 150 � 150 � 100 0 100 � 100 0 100 � 100 0 100 � 500 0 500 � 100 0 100 150 150 150 150 150 100 100 100 100 100 50 50 50 50 50 0 0 0 0 0 � 50 � 50 � 50 � 50 � 50 � 100 � 100 � 100 � 100 � 100 � 150 � 150 � 150 � 150 � 150 � 100 0 100 � 100 0 100 � 100 0 100 � 500 0 500 � 100 0 100 • Nearby: densities are approximately circular/elliptical • Distant: densities are approximately factorial [Simoncelli, ‘97; Wainwright&Simoncelli, ‘99]

  2. ICA-transformed joint densities d=2 d=16 d=32 12 12 12 10 10 10 kurtosis 8 8 8 6 6 6 4 4 4 0 ! /4 ! /2 3 ! /4 0 ! /4 ! /2 3 ! /4 0 ! /4 ! /2 3 ! /4 ! ! ! orientation data (ICA’d): sphericalized: factorialized:

  3. ICA-transformed joint densities d=2 d=16 d=32 12 12 12 10 10 10 kurtosis • Local densities are elliptical (but non-Gaussian) 8 8 8 6 6 6 • Distant densities are factorial 4 4 4 0 ! /4 ! /2 3 ! /4 0 ! /4 ! /2 3 ! /4 0 ! /4 ! /2 3 ! /4 ! ! ! orientation data (ICA’d): sphericalized: factorialized: [Wegmann&Zetzsche ‘90; Simoncelli ’97; + many recent models]

  4. Spherical vs LTF 0.2 blk blk blk 0.4 blk size = 3x3 blk size = 7x7 blk size = 11x11 spherical 0.2 spherical spherical 0.35 factorial factorial factorial 0.15 0.3 0.15 0.25 0.1 0.2 0.1 0.15 0.05 0.1 0.05 0.05 0 0 0 3 6 9 12 15 18 20 3 6 9 12 15 18 20 3 6 9 12 15 18 20 kurtosis kurtosis kurtosis 3x3 7x7 15x15 data (ICA’d): sphericalized: factorialized: • Histograms, kurtosis of projections of image blocks onto random unit-norm basis functions. • These imply data are closer to spherical than factorial [Lyu & Simoncelli 08]

  5. non-Gaussian elliptical observations and models of natural images: - Zetzsche & Krieger, 1999; - Huang & Mumford, 1999; - Wainwright & Simoncelli, 2000; - Hyvärinen and Hoyer, 2000; - Parra et al., 2001; - Srivastava et al., 2002; - Sendur & Selesnick, 2002; - Teh et al., 2003; - Gehler and Welling, 2006 - Lyu & Simoncelli, 2008 - etc.

  6. Modeling heteroscedasticity Method 2: Hidden scaling variable for each patch Gaussian scale mixture (GSM) [Andrews & Mallows 74]: x = √ z � � u • is Gaussian, � z > 0 u � • and are independent z u • is elliptically symmetric, with covariance ∝ C u � x � • marginals of are leptokurtotic x [Wainwright&Simoncelli 99]

  7. GSM - prior on z • Empirically, z is approximately lognormal [Portilla etal, icip-01] p z ( z ) = exp ( − (log z − µ l ) 2 / (2 σ 2 l )) l ) 1 / 2 z (2 πσ 2 • Alternatively, can use Jeffrey’s noninformative prior [Figueiredo&Nowak, ‘01; Portilla etal, ‘03] p z ( z ) ∝ 1 /z

  8. GSM simulation GSM simulation Image data ! ! #" #" " " #" #" ! !" " !" ! !" " !" [Wainwright & Simoncelli, NIPS*99]

  9. Model III (GSM) Coefficient density: Basis set: Image: � � � � ������� � � �

  10. Original coefficients Normalized by √ z � 2 � 4 � 4 � 5 marginal Log probability Log probability � 6 [Ruderman&Bialek 94] � 6 � 7 � 8 � 8 � 9 � 10 � 500 0 500 � 10 � 5 0 5 100 8 6 50 joint [Schwartz&Simoncelli 01] 4 0 2 � 50 0 � 100 0 2 4 6 8 � 100 � 50 0 50 100 subband

  11. 6 Model Encoding Cost (bits/coeff) Model Encoding cost (bits/coeff) 5.5 5 5 4.5 4 4 3 3.5 3 2 First Order Ideal Gaussian Model Conditional Model Generalized Laplacian 2.5 1 1 2 3 4 5 6 3 4 5 Empirical Conditional Entropy Empirical First Order Entropy (bits/coeff) [Buccigrossi & Simoncelli 99]

  12. Bayesian denoising • Additive Gaussian noise: y = x + w P ( y | x ) ∝ exp[ − ( y − x ) 2 / 2 σ 2 w ] • Bayes’ least squares solution is conditional mean: x ( y ) = I ˆ E( x | y ) � = dx P ( y | x ) P ( x ) x/ P ( y )

  13. I. Classical If signal is Gaussian, BLS estimator is linear: x ) denoised (ˆ σ 2 x ( y ) = ˆ x · y σ 2 x + σ 2 n => suppress fine scales, noisy ( y ) retain coarse scales

  14. Non-Gaussian coefficients " #" -*./01.*,6'.)07+48 94:..'41,;*1.')5,, 2+0343'(')5 ! % #" ! $ #" ! !"" " !"" &'()*+,-*./01.* [Burt&Adelson ‘81; Field ‘87; Mallat ‘89; Daugman ‘89; etc]

  15. II. BLS for non-Gaussian prior • Assume marginal distribution [Mallat ‘89] : P ( x ) ∝ exp −| x/s | p • Then Bayes estimator is generally nonlinear: p = 1.0 p = 0.5 p = 2.0 [Simoncelli & Adelson, ‘96]

  16. MAP shrinkage p=2.0 p=1.0 p=0.5 [Simoncelli 99]

  17. Denoising: Joint � dz P ( z | � I E( x | � y ) = y ) I E( x | � y, z ) � dz P ( z | �  zC u ( zC u + C w ) − 1 �   = y ) y  ctr where y T ( zC u + C w ) − 1 � y ) = P ( � y | z ) P ( z ) y | z ) = exp( − � y/ 2) P ( z | � , P ( � � (2 π ) N | zC u + C w | P � y Numerical computation of solution is reasonably efficient if one jointly diagonalizes C u and C w ... [Portilla, Strela, Wainwright, Simoncelli, ’03] IPAM, 9/04 20

  18. Example estimators ESTIMATED COEFF. !" +'1&2/1+3)*%+,,- " ! w ! !" #" !" " " NOISY COEFF. ! #" ! !" $%&'()./0+$1 $%&'()*%+,,- Estimators for the scalar and single-neighbor cases [Portilla etal 03]

  19. Comparison to other methods "'& "'& " " ,456748+91:;<= /456,(74-.)/-0123 ! "'& ! "'& :>6965#8*>?6< ! ! ! ! ! !'& ! !'& ! # ! # ! #'& ! #'& )89 ! :1:;<=>? ! $ ! $ .=9@A?-9?=@BC8D ! $'& ! $'& !" #" $" %" &" !" #" $" %" &" ()*+,-*.)/-0123 ()*+,-*.)/-0123 Results averaged over 3 images [Portilla etal 03]

  20. Noisy Original (22.1 dB) Matlab’s BLS-GSM wiener2 (30.5 dB) (28 dB)

  21. Noisy Original (8.1 dB) UndWvlt BLS-GSM Thresh (21.2 dB) (19.0 dB)

  22. Real sensor noise 400 ISO denoised

  23. GSM summary • GSM captures local variance • Underlying Gaussian leads to simple computation • Excellent denoising results • What’s missing? • Global model of z variables [Wainwright etal 99; Romberg etal ‘99; Hyvarinen/Hoyer ‘02; Karklin/ Lewicki ‘02; Lyu/Simoncelli 08] • Explicit geometry: phase and orientation

  24. Global models for z • Non-overlapping neighborhoods, tree-structured z [Wainwright etal 99; Romberg etal ’99] z � u Coarse scale Fine scale • Field of GSMs: z is an exponentiated GMRF, is � u a GMRF, subband is the product [Lyu&Simoncelli 08]

  25. State-of-the-art denoising Lena Boats " " # # ! " ! " ∆ ()*+, ∆ ()*+, ! $ ! $ ! ' ! ' ! & ! & ! "#"! $! !# %! "## ! "#"! $! !# %! "## σ σ FoGSM BM3D kSVD GSM FoE [Lyu&Simoncelli, PAMI 08]

  26. Measuring Orientation 2-band steerable pyramid: Image decomposition in terms of multi-scale gradient measurements [Simoncelli et.al., 1992; Simoncelli & Freeman 1995]

  27. Multi-scale gradient basis

  28. Multi-scale gradient basis • Multi-scale bases: efficient representation

  29. Multi-scale gradient basis • Multi-scale bases: efficient representation • Derivatives: good for analysis • Local Taylor expansion of image structures • Explicit geometry (orientation)

  30. Multi-scale gradient basis • Multi-scale bases: efficient representation • Derivatives: good for analysis • Local Taylor expansion of image structures • Explicit geometry (orientation) • Combination: • Explicit incorporation of geometry in basis • Bridge between PDE / harmonic analysis approaches

  31. orientation magnitude orientation [Hammond&Simoncelli 06; cf. Oppenheim and Lim 81]

  32. Importance of local orientation Randomized orientation Randomized magnitude [Hammond&Simoncelli 05]

  33. Reconstruction from orientation Original Quantized to 2 bits • Reconstruction by projections onto convex sets • Resilient to quantization [Hammond&Simoncelli 06]

  34. Image patches related by rotation two-band steerable pyramid coefficients [Hammond&Simoncelli 06]

  35. raw rotated patches patches PCA of normalized gradient patches --- Raw Patches Rotated Patches [Hammond&Simoncelli 06]

  36. Orientation-Adaptive GSM model Model a vectorized patch of wavelet coefficients as: patch rotation operator hidden magnitude/orientation variables [Hammond&Simoncelli 06]

  37. Orientation-Adaptive GSM model Model a vectorized patch of wavelet coefficients as: patch rotation operator hidden magnitude/orientation variables Conditioned on ; is zero mean gaussian with covariance [Hammond&Simoncelli 06]

  38. Estimation of C( θ ) from noisy data noisy patch unknown, approximate by measured from noisy data. Assuming independent and noise rotationally invariant (assuming w.l.o.g. E[z] =1 ) [Hammond&Simoncelli 06]

  39. Bayesian MMSE Estimator [Hammond&Simoncelli 06]

  40. Bayesian MMSE Estimator condition on and integrate over hidden variables [Hammond&Simoncelli 06]

  41. Bayesian MMSE Estimator condition on and integrate over hidden variables [Hammond&Simoncelli 06]

  42. Bayesian MMSE Estimator condition on and integrate over hidden variables Wiener estimate [Hammond&Simoncelli 06]

  43. Bayesian MMSE Estimator condition on and integrate over hidden variables Wiener estimate has covariance separable prior for hidden variables [Hammond&Simoncelli 06]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend