star clusters lecture 3 kinematic properties
play

STAR CLUSTERS Lecture 3 Kinematic Properties Nora Ltzgendorf (ESA) - PowerPoint PPT Presentation

STAR CLUSTERS Lecture 3 Kinematic Properties Nora Ltzgendorf (ESA) LECTURE 2 1. Star Formation from gas clouds, fragmentation Initial mass function (IMF): multiple power laws, changes with time 2. Multiple Stellar populations


  1. STAR CLUSTERS Lecture 3 Kinematic Properties Nora Lützgendorf (ESA)

  2. LECTURE 2 1. Star Formation •from gas clouds, fragmentation •Initial mass function (IMF): multiple power laws, changes with time 2. Multiple Stellar populations •Photometric evidence: Multiple sequences in CMD •Spectroscopic evidence: Na-O anti-correlation •Explanations: 1. Polluters + 2nd Generation 2. Polluters •Problems: Mass budget problem (must have lost 90% of their mass??…), and many more… Nora Lützgendorf, KAS16 2 / 51

  3. O utline 1. The Gravitational N-body problem 2. Dynamic Equilibrium 3. Negative Heat Capacity 4. Core Collapse 5. Equipartition of energies 6. Mass Segregation Nora Lützgendorf, KAS16 3 / 51

  4. O utline 1. The Gravitational N-body problem 2. Dynamic Equilibrium 3. Negative Heat Capacity 4. Core Collapse 5. Equipartition of energies 6. Mass Segregation Nora Lützgendorf, KAS16 4 / 51

  5. G ravitation N ~ r j − ~ r i ~ X F i = Gm i m j r i | 3 | ~ r j − ~ j =1 ,j 6 = i m j − 1 m j m j − 2 ~ r i − ~ r j m j +1 m i Nora Lützgendorf, KAS16 5 / 51

  6. G ravitation N ~ r j − ~ r i ¨ X ~ r i = − G m j r i | 3 | ~ r j − ~ j =1 ,j 6 = i m j − 1 m j m j − 2 ~ r i − ~ r j m j +1 m i Nora Lützgendorf, KAS16 6 / 51

  7. G ravitation - N = 2 2 ~ r j − ~ r i ¨ X ~ r i = − G m j | ~ r i | 3 r j − ~ j =1 ,j 6 = i m j ~ r i − ~ r j m i Nora Lützgendorf, KAS16 7 / 51

  8. G ravitation - N = 2 a (1 − e 2 ) r ( θ ) = 1 + 2 cos( θ ) e=2 e=1 e=0.5 e=0 Nora Lützgendorf, KAS16 8 / 51

  9. G ravitation - N = 2 Nora Lützgendorf, KAS16 9 / 51

  10. G ravitation - N = 3 3 ~ r j − ~ r i ¨ X ~ r i = − G m j | ~ r i | 3 r j − ~ j =1 ,j 6 = i m j m j − 1 ~ r i − ~ r j m i Nora Lützgendorf, KAS16 10 / 51

  11. G ravitation - N = 3 Nora Lützgendorf, KAS16 11 / 51

  12. G ravitation - N = 3 Nora Lützgendorf, KAS16 12 / 51

  13. G ravitation - N = 3 C 3 ~ r j − ~ r i ¨ X ~ r i = − G m j H | ~ r i | 3 r j − ~ A j =1 ,j 6 = i O S m j m j − 1 ~ r i ! − ~ r j BUT… m i Nora Lützgendorf, KAS16 13 / 51

  14. G ravitation - N = 3 C 3 ~ r j − ~ r i ¨ X ~ r i = − G m j H | ~ r i | 3 r j − ~ A j =1 ,j 6 = i O S m j m j − 1 ~ r i ! − ~ r j BUT… m i Nora Lützgendorf, KAS16 14 / 51

  15. G ravitation - N = 3 L4 L3 L1 L2 L5 Nora Lützgendorf, KAS16 15 / 51

  16. E xplanations - Problems WIND LISA PATHFINDER HERSCHEL SOHO JWST L 2 GAIA Nora Lützgendorf, KAS16 16 / 51

  17. G ravitation - N > 3 C N ~ r j − ~ r i ¨ X ~ r i = − G m j H r i | 3 | ~ r j − ~ A j =1 ,j 6 = i O m j − 1 S m j m j − 2 ~ r i ! − ~ r j m j +1 m i Nora Lützgendorf, KAS16 17 / 51

  18. O utline 1. The Gravitational N-body problem 2. Dynamic Equilibrium 3. Negative Heat Capacity 4. Core Collapse 5. Equipartition of energies 6. Mass Segregation Nora Lützgendorf, KAS16 18 / 51

  19. D ynamic Equilibrium EQUILIBRIUM Nora Lützgendorf, KAS16 19 / 51

  20. D ynamic Equilibrium COLD (v = small or 0) Nora Lützgendorf, KAS16 20 / 51

  21. D ynamic Equilibrium COLD (v = small or 0) Nora Lützgendorf, KAS16 21 / 51

  22. D ynamic Equilibrium HOT (v = large) Nora Lützgendorf, KAS16 22 / 51

  23. D ynamic Equilibrium HOT (v = large) Nora Lützgendorf, KAS16 23 / 51

  24. D ynamic Equilibrium - Definition EQUILIBRIUM: ‣ No EXPANSION, and no CONTRACTION, even though all particles are in MOTION Nora Lützgendorf, KAS16 24 / 51

  25. V irial Theorem N K = 1 KINETIC ENERGY X v 2 m i ~ i 2 i =1 N N m i m j W = − G 1 POTENTIAL ENERGY X X | ~ r j | r i − ~ 2 i =1 i 6 = j CONSERVATION OF ENERGY E = W + K = const. VIRIAL THEOREM W = − 2 K Nora Lützgendorf, KAS16 25 / 51

  26. O utline 1. The Gravitational N-body problem 2. Dynamic Equilibrium 3. Negative Heat Capacity 4. Core Collapse 5. Equipartition of energies 6. Mass Segregation Nora Lützgendorf, KAS16 26 / 51

  27. “ T emperature” Like in a gas: ‣ Particles move fast system is HOT ‣ Particles move slow system is COLD 1 v 2 = 3 2 m ¯ 2 k B T K = 3 2 Nk B ¯ T Nora Lützgendorf, KAS16 27 / 51

  28. H eat Capacity K = 3 2 Nk B ¯ T VIRIAL THEOREM E = W + K W = − 2 K = − K = − 3 2 Nk B ¯ T C ≡ dE = − 3 2 Nk B d ¯ T Nora Lützgendorf, KAS16 28 / 51

  29. H eat Capacity C = positive GETS HOTTER ENERGY C = negative C ≡ dE T = − 3 2 Nk B d ¯ GETS COLDER Nora Lützgendorf, KAS16 29 / 51

  30. H eat Capacity C = positive GETS COLDER ENERGY C = negative C ≡ dE T = − 3 2 Nk B d ¯ GETS HOTTER Nora Lützgendorf, KAS16 30 / 51

  31. H eat Capacity C = positive C = negative Nora Lützgendorf, KAS16 31 / 51

  32. H eat Capacity V 1 ENERGY V 2 V 2 > V 1 HOTTER COLDER Nora Lützgendorf, KAS16 32 / 51

  33. O utline 1. The Gravitational N-body problem 2. Dynamic Equilibrium 3. Negative Heat Capacity 4. Core Collapse 5. Equipartition of energies 6. Mass Segregation Nora Lützgendorf, KAS16 33 / 51

  34. C ore Collapse Cluster of stars with equal mass: Stars deeper in the potential move faster (hot) Nora Lützgendorf, KAS16 34 / 51

  35. C ore Collapse Cluster of stars with equal mass: Stars deeper in the potential move faster (hot) Nora Lützgendorf, KAS16 35 / 51

  36. C ore Collapse Encounters of fast and slow stars: ENERGY ~ P = M 1 · ~ v 1 + M 2 · ~ v 2 = const. Slow star gets faster, fast star gets slower Nora Lützgendorf, KAS16 36 / 51

  37. C ore Collapse Fast star: looses energy ⇒ sinks deeper in the potential well ⇒ gains speed ⇒ becomes even faster (hotter) Slow star: gains energy ⇒ climbs out of the potential well, ⇒ looses speed ⇒ becomes even slower (colder) Nora Lützgendorf, KAS16 37 / 51

  38. C ore Collapse Nora Lützgendorf, KAS16 38 / 51

  39. C ore Collapse Nora Lützgendorf, KAS16 39 / 51

  40. C ore Collapse Nora Lützgendorf, KAS16 40 / 51

  41. C ore Collapse Nora Lützgendorf, KAS16 41 / 51

  42. C ore Collapse Nora Lützgendorf, KAS16 42 / 51

  43. C ore Collapse M28 M15 Nora Lützgendorf, KAS16 43 / 51

  44. C ore Collapse Surface Brightness M28 Distance Surface Brightness Core Collapsed Distance M15 Nora Lützgendorf, KAS16 44 / 51

  45. O utline 1. The Gravitational N-body problem 2. Dynamic Equilibrium 3. Negative Heat Capacity 4. Core Collapse 5. Equipartition of energies 6. Mass Segregation Nora Lützgendorf, KAS16 45 / 51

  46. E quipartition of Energies Cluster of stars with UN - equal mass: Nora Lützgendorf, KAS16 46 / 51

  47. E quipartition of Energies Encounters of high-mass and low-mass stars: ENERGY ~ P = M 1 · ~ v 1 + M 2 · ~ v 2 = const. Low-mass star gets faster, high-mass star gets slower K i ∼ M i Kinetic energies become more equal 2 v 2 i Nora Lützgendorf, KAS16 48 / 51

  48. E quipartition of Energies When all stars (at radius R) have the same kinetic energy High-mass stars are slow, low-mass stars are fast Anderson & van der Marel, 2010 EQUIPARTITION V ~ 1/sqrt(M) T I T I O N N O E Q U I P A R Nora Lützgendorf, KAS16 49 / 51

  49. O utline 1. The Gravitational N-body problem 2. Dynamic Equilibrium 3. Negative Heat Capacity 4. Core Collapse 5. Equipartition of energies 6. Mass Segregation Nora Lützgendorf, KAS16 50 / 51

  50. M ass Segregation Equipartition of energies: High-mass stars sink to the center Low-mass stars rise to the outskirts Nora Lützgendorf, KAS16 51 / 51

  51. M ass Segregation Mass gradient from center to the outskirts Dynamical Mass Loss log N log M Nora Lützgendorf, KAS16 52 / 51

  52. S ummary - 1 1. The Gravitational N-body problem •N=2: exactly solvable •N=3: approximately solvable •N>3: only numerical solvable 2. Dynamic Equilibrium •No EXPANSION or CONTRACTION of the system 3. Negative Heat Capacity •Remove energy —> hotter •Gain energy —> colder Nora Lützgendorf, KAS16 53 / 51

  53. S ummary - 2 4. Core Collapse •Very condensed core, steep light profile 5. Equipartition of Energies •All the stars (at radius R) have the same kinetic energy •High-mass stars: slow, low-mass stars: fast 6. Mass Segregation •Mass gradient from center to the outskirts Nora Lützgendorf, KAS16 54 / 51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend