stability results for scattered data interpolation by
play

Stability Results for Scattered Data Interpolation by Trigonometric - PowerPoint PPT Presentation

Stability Results for Scattered Data Interpolation by Trigonometric Polynomials Daniel Potts Stefan Kunis Institute for Mathematics Institute for Mathematics University of L ubeck University of L ubeck email: potts@math.uni-luebeck.de


  1. Stability Results for Scattered Data Interpolation by Trigonometric Polynomials Daniel Potts Stefan Kunis Institute for Mathematics Institute for Mathematics University of L¨ ubeck University of L¨ ubeck email: potts@math.uni-luebeck.de kunis@math.uni-luebeck.de http://www.math.uni-luebeck.de/potts http://www.math.uni-luebeck.de/kunis

  2. Content • Basics • ’direct’ Problem, matrix vector multiplication, Vandermonde-like, NFFT • ’inverse’ Problem, solving Vandermonde-like systems, INFFT • Interpolation, Stability • Numerical examples, MRI

  3. Basics Geometry torus, sampling set T := R / Z , ( x j ) j =0 ,...,M − 1 =: X ⊂ T separation distance, fill distance h := j =0 ,...,M − 1 dist ( x j , x j +1 ) , min δ := j =0 ,...,M − 1 dist ( x j , x j +1 ) max Ansatz trigonometric polynomials � � e 2 π i k ( · ) : k = − N 2 , . . . , N T N := span 2 − 1 discrete system � e 2 π i kx j � ˆ f ∈ C M , f ∈ C N 2 − 1 , A := j =0 ,...,M − 1; k = − N 2 ,..., N

  4. Matrix vector multiplication - Vandermonde-like matrix - NFFT f ∈ C N given, compute ˆ N 2 − 1 � ˆ f = A ˆ f k e 2 π i kx j , f , f j = j = 0 , . . . , M − 1 k = − N 2 FFT for M = N equispaced nodes, O ( N log N ) operations FFT for non equispaced nodes (Dutt, Rokhlin; Beylkin; P ., Steidl, Tasche), in O ( N log N + M ) operations

  5. Linear system of equations - iNFFT ,,inverse” problem, f ∈ C M given in A ˆ f ≈ f † = A † f fulfills Moore-Penrose pseudo-inverse solution ˆ f � ˆ � f − A ˆ f � 2 → min f � 2 = min . subject to j special case IDFT, Gauß quadrature, M = N, x j = M − 0 . 5 A H W ˆ f = A H W f A = I ⇒ ���� M I 1 direct solver: Reichel, Ammar, Gragg; Faßbender

  6. Approximation problem weighted approximation problem, ω j > 0 , W = diag ( ω j ) M − 1 j =0 , ˆ f � A ˆ f − f � W → min weighted normal equation of first kind ˆ A H W A f = A H W f � �� � Toeplitz dense sampling set δ := j =0 ,...,M − 1 dist ( x j , x j +1 ) max Feichtinger, Gr¨ ochenig, Strohmer (weighted normal equation of first kind ( N < 1 δ )) � 1 + δN � 2 � � A H W A ≤ cond 2 1 − δN

  7. Interpolation problem vanishing residual, i.e. A ˆ f − f = 0 , � N ≥ M (damped) minimisation problem, 0 < ˆ W := diag (ˆ ω k ) k = − N 2 ,..., N 2 − 1 N 2 − 1 � f k | 2 =: � ˆ ˆ k | ˆ f A ˆ ω − 1 f � 2 ˆ → min f = f subject to W − 1 ˆ k = − N 2 example N = 50 , M = 5 nodes, � f � L 2 and � f � L 2 + � f ′ � L 2 minimal, resp. 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 −0.5 0 0.5 −0.5 0 0.5 = 1 + (2 πk ) 2 ω − 1 ω k = 1 ˆ ˆ k normal equation of second kind W A H ˜ W A H ˜ A ˆ f = ˆ ˆ f = f , f

  8. Interpolation with polynomial kernels N 2 − 1 � e − 2 π i kx ˆ ω k e 2 π i ky , K ( x − y ) := k = − N 2 M − 1 � f ( y ) = α l K ( x l − y ) l =0 1 1 1 1 0.5 0.5 0.5 0.5 0 0 0 0 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 Dirichlet Fejer Cesaro Sobolev centers of the kernels and nodes for interpolation are equal � W A H � A ˆ j,l = K ( x j − x l )

  9. Stability aim: find bounds dependent only on N, h for � W A H � � W A H � A ˆ A ˆ λ = λ min , Λ = λ max norm equivalence � f � 2 f ∈ T N ,f ( x j )= f j � f � 2 2 ∼ inf W − 1 ˆ Marcinkiewicz-Zygmund-inequality Λ − 1 � f � 2 f ∈ T N ,f ( x j )= f j � f � 2 W − 1 ≤ λ − 1 � f � 2 2 ≤ inf 2 . ˆ equispaced nodes, circulant interpolation matrix, eigenvalue characterisa- tion � W A H � � A ˆ λ j = M ω k ˆ k = j mod M

  10. Arbitrary nodes if K (0) = 1 and C β | K ( x ) | ≤ N β | x | β � � − 1 2 , 1 for x ∈ , then the interpolation matrix ( K ( x j − x l )) j,l =0 ,...,M − 1 has 2 bounded eigenvalues 1 − 2 ζ ( β ) C β ≤ λ ≤ 1 ≤ Λ ≤ 1 + 2 ζ ( β ) C β N β h β N β h β where ζ denotes the Riemann-zeta-function � k � for ˆ ω k ≈ g and under mild assumptions on g , N � � g ( β − 1) � ( ζ ( β ) + 1) � V C β ≤ . (2 π ) β − 2 1 − β ζ ( β ) | g ( β − 1) | V

  11. explicit estimates for Dirichlet’s kernel 1 − (1 − ln 2 h ) ≤ λ ≤ 1 ≤ Λ ≤ 1 + (1 − ln 2 h ) Nh Nh Fejer’s kernel π 2 π 2 1 − 3 N 2 h 2 ≤ λ ≤ 1 ≤ Λ ≤ 1 + 3 N 2 h 2 Jackson’s kernel 16 π 4 16 π 4 1 − 45 N 4 h 4 ≤ λ ≤ 1 ≤ Λ ≤ 1 + 45 N 4 h 4 condition number equispaced arbitrary Nh +(1 − ln 2 h ) Nh +1 Dirichlet Nh − 1 Nh − (1 − ln 2 h ) N 2 h 2 + π 2 N 2 h 2 +1 Fejer 3 N 2 h 2 − π 2 N 2 h 2 − 1 3

  12. Multivariate setting torus, metric T d := R d / Z d , dist ( x , y ) := min j ∈ Z d � ( x + j ) − y � ∞ normal equation, kernels � W A H � A ˆ j,l = K ( x j − x l ) example, Jackson’s kernel, N = 22 C β ∞ for x ∈ T d , then if K ( 0 ) = 1 and | K N ( x ) | ≤ N β � x � β 1 − 2 dζ ( β ) C β N β h β + d − 1 ≤ λ ≤ 1 ≤ Λ ≤ 1 + 2 dζ ( β ) C β N β h β + d − 1

  13. Iterative methods Landweber iteration f l +1 = ˆ ˆ f l + α ˆ W ˆ z l steepest descent z H l ˆ α l = ˆ W ˆ z l v H l W v l conjugated gradient � � W A H W r 0 , ˆ ˆ W A H W A ˆ W A H W r 0 , . . . K l ( A , ˆ r 0 ) := span � r l − r † � W → min CGNR: † � ˆ � ˆ f l − ˆ W − 1 → min CGNE: f residuals r l = f − A ˆ v l = A ˆ z l = A H W r l , f l , W ˆ z l ˆ

  14. approximation problem, N ≤ δ − 1 A H W A ˆ f = A H W f ACT, CGNR (Feichtinger, Gr¨ ochenig, Strohmer) � r l − r † � W ≤ 2 ( Nδ ) l � r 0 − r † � W interpolation problem, N ≥ ch − 1 W A H ˜ W A H ˜ ˆ A ˆ f = ˆ f = f , f CGNE (P ., Kunis) � c β � l † � ˆ † � ˆ � ˆ f l − ˆ � ˆ f 0 − ˆ W − 1 ≤ 2 f f W − 1 N β h β

  15. Examples Franke function, M = 100000 random nodes, N = 512 , L 2 and Sobolev- type, CGNE image reconstruction, M = 30000 random nodes, N = 256 , multiquadric- type, CGNR

  16. Glacier contour data M = 8345 points, N = 256 , multiquadric-type, CGNE

  17. spiral MRI, reconstruction data points INFFT

  18. Software available: NFFT – C subroutine library (Kunis, P . 2002–2004) http://www.math.uni-luebeck.de/potts/nfft Features – Implemented transforms for d dimensions – Arbitrary-size transforms – Works on any platform with a C compiler and the FFTW package – iterative solution of the inverse transform (LANDWEBER, STEEPEST- DESCENT, CGNR, CGNE) NFFT 2.0 manual online Fast Fourier transform at nonequispaced knots, A user’s guide to a C-library (Kunis, P .)

  19. Conclusions • NFFT fast computation of NFFT • iterative method for solving Vandermonde-like systems, i • Applications – MRI – Radon transform (P ., Steidl 2002) – polar FFT, polar IFFT – next step � f − A ˆ f � W + λ � ˆ f � ˆ W → min

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend