stability phase transitions phase diagrams
play

Stability, phase transitions, phase diagrams following Callen - PowerPoint PPT Presentation

Stability, phase transitions, phase diagrams following Callen 1985 book 8Stability of thermodynamic systems 2 Intrinsic stability Basic extremum principle: dS = 0 and d 2 S < 0 or extremum and maximum Stable


  1. Stability, 
 phase transitions, 
 phase diagrams following Callen 1985 book

  2. 8—Stability of thermodynamic systems 2

  3. Intrinsic stability • Basic extremum principle: dS = 0 and d 2 S < 0 or extremum and maximum • Stable vs. unstable equilibrium (analogy in mechanics) • Considerations of stability … most interesting and significant predictions of thermodynamics • Consider two identical subsystems, fundamental relation S (1) = S (2) = S ( U,V,N ) • Suppose we remove Δ U from (1) and transfer it to (2) • Change in total entropy is: 2 S ( U , V , N ) ⟶ S ( U + Δ U , V , N ) + S ( U + Δ U , V , N ) > 2 S ( U , V , N ) ! • That is, if adiabatic restraint were removed, energy would flow spontaneously 
 across the wall, U (1) would increase and U (1) would decrease • Even within one subsystem, internal inhomogeneities would tend to develop • Loss of homogeneity … hallmark of a phase transition • Condition of stability: concavity of the entropy global condition S ( U + Δ U , V , N ) + S ( U + Δ U , V , N ) ≤ 2 S ( U , V , N ) ∀Δ U ∂ 2 S For Δ U → 0 : ≤ 0 local condition ∂ U 2 V , N 3

  4. Intrinsic stability • If we were to “transfer” volume, condition of stability: global condition S ( U , V + Δ V , N ) + S ( U , V − Δ V , N ) ≤ 2 S ( U , V , N ) ∀Δ V ∂ 2 S For Δ V → 0 : ≤ 0 local condition ∂ V 2 U , N • A fundamental relation may be obtained somehow (e.g., extrapolation of experimental data or statistical mechanical calculation) that looks, for example: • The “underlying” F .R. above does not satisfy the concavity condition. • The proper thermodynamic F .R. is constructed as the envelope of the superior tangent lines. • A point on the straight line BHF (e.g., H) corresponds to a phase separation. Part of the system is in state B and the rest in state F . • In the 3-dimensional S–U–V subspace, the global condition of stability : 
 Entropy surface must lie below its tangent planes. S ( U + Δ U , V + Δ V , N ) + S ( U − Δ U , V − Δ V , N ) ≤ 2 S ( U , V , N ) ∀Δ U , ∀Δ V 4

  5. Intrinsic stability • In the 3-dimensional S–U–V subspace, the global condition of stability: Entropy surface must lie below its tangent planes. S ( U + Δ U , V + Δ V , N ) + S ( U − Δ U , V − Δ V , N ) ≤ 2 S ( U , V , N ) ∀Δ U , ∀Δ V ∂ V 2 − ( 2 ∂ U ∂ V ) ∂ 2 S ∂ 2 S ∂ 2 S ∂ 2 S ∂ 2 S For Δ U → 0 and Δ U → 0 : ≤ 0 & ≤ 0 & ≥ 0 ∂ U 2 ∂ V 2 ∂ U 2 V , N U , N • Mathematically: d 2 S ( U , V ) < 0 … negatively definite form … Hessian matrix … Conditions of stability for thermodynamic potentials ∂ V 2 − ( 2 ∂ S ∂ V ) ∂ 2 U ∂ 2 U ∂ 2 U ∂ 2 U ∂ 2 U ≥ 0 & ≥ 0 & ≥ 0 ∂ S 2 ∂ V 2 ∂ S 2 V , N S , N ∂ V 2 − ( 2 ∂ T ∂ V ) ∂ 2 F ∂ 2 F ∂ 2 F ∂ 2 F ∂ 2 F ≤ 0 & ≥ 0 & ≥ 0 ∂ T 2 ∂ V 2 ∂ T 2 V , N T , N ∂ P 2 − ( 2 ∂ S ∂ P ) ∂ 2 H ∂ 2 H ∂ 2 H ∂ 2 H ∂ 2 H ≥ 0 & ≤ 0 & ≥ 0 ∂ S 2 ∂ P 2 ∂ S 2 P , N S , N ∂ P 2 − ( 2 ∂ T ∂ P ) ∂ 2 G ∂ 2 G ∂ 2 G ∂ 2 G ∂ 2 G ≤ 0 & ≤ 0 & ≥ 0 ∂ T 2 ∂ P 2 ∂ T 2 P , N T , N 5

  6. Physical consequences of stability ∂ 2 S ∂ U ( T ) V , N 1 = − 1 ∂ T 1 = ∂ = − ≤ 0 ⇔ C V ≥ 0 ∂ U 2 T 2 T 2 NC V ∂ U V , N V , N ∂ 2 F = K T = − ∂ P 1 = V ≥ 0 ⇔ κ T ≥ 0 ( K T ≥ 0) ∂ V 2 ∂ V V κ T T , N T , N C P − C V = Tv α 2 Recall: ⇒ C P ≥ C V ≥ 0 κ T = C V κ S Recall: ⇒ κ T ≥ κ S ≥ 0 C P κ T 6

  7. 9—First order phase transitions 7

  8. Phase diagram A chart showing conditions (P ,T,V,…) at which thermodynamic phases occur and coexist 8

  9. First order phase transition G high density phase (liq.) low density phase (vap.) V 9

  10. 
 First order phase transition A,B,C … first-order transition 
 The two phases inhabit di ff erent regions in the "thermodynamic space" D … second-order transition 10

  11. Discontinuity in entropy: latent heat g … (molar Gibbs potential) equal in the two phases u, f, h, v, s … discontinuous across the transition T liquid solid + liquid steady supply of heat solid time l LS ≡ l f = T ( s L − s S ) … latent heat of fusion … latent heat of first-order transition l = T Δ s = Δ h h = Ts + g 11

  12. Slope of coexistence curves: Clapeyron equation Phase equilibrium: At any point along coexistence curve g is the same in both phases (and in single-component system, g = μ ) μ A = μ A ′ � μ B = μ B ′ � … along coexistence curve d μ = d μ ′ � − sdT + vdP = − s ′ � dT + v ′ � dP dP dT = s ′ � − s v ′ � − v = Δ s Δ v = Δ h l T Δ v = T Δ v Clapeyron slope [figure source] Solid–solid phase transitions of minerals in the Earth's: some dP/dT>0, some <0 While the low-P phase → high-P phase transition always has Δ v<0, Δ s can go both ways. 12

  13. Navrotsky, A., Thermodynamic properties of minerals, in Mineral Physics & Crystallography: A Hand- book of Physical Constants, AGU 24 THERh4ODYNAhIICS Reference Shelf, vol. 2, edited by T. J. Ahrens, pp. 18–28, American Geophysical Union, Washington DC, doi:10.1029/RF002p0018, 1995. Table 5. Enthalpy, Entropy and Volume Changes for High Pressure Phase Transitions AH’ (kJ/mol) AS” (J/m01 K) AV“ (cm3/mol) 30.0 f 2.8a f2] -77*19a[21 . . -3.16a 12] Mg2Si04(a= P> 39.1 f 2.d21 -15.0 t 2.4L21 -4.14[21 Mg2SiO4(a=Y) Fe2Si04(a=P) 9.6 + 1 .3L21 -10.9 AZ 0.8[21 -3.20[21 I%2Si04(a=y) 3.8 f 2.4L2J -14.0 f 1.912J -4.24 L2J MgSi03 (px = il) -15.5 -4.94 59.1 f 4.3131 f 2.0[3J 131 [9J MgSi03 (px = gt) -2.0 + 0.5 L91 35.7 f 3.d91 -2.83 MgSi03 (il = pv) 51.1 + 6.d171 +5 + 4[171 -1.89[171 +4 f 41171 96.8 + 5.8/l 71 Ws 2siWYk MgSiWpv)+MgO -3.19[17J SiO 2 (q = co) 2.1+ 0.5[11 -5.0 -2.05 [I] * 0.4[1J SiO 2 (co = st) -4.2 f l.l[IJ 49.0 f 1 .l[lJ -6.63 [II a AH and AS are values at I atm near 1000 K, AV is AV”298, for all listings in table, a = olivine, /I = spinelloid or wadsleyite, y = spinel, px = pyrox-ene, il = ilmenite, gt = garnet, pv = perovskite, q = quartz, co = coesite, st = stishovite Table 6. Thermodynamic Parameters for Other Phase Transitions Transition AH” AS” AV” (J/K*mol) (Wmol) (cm 3/mol> SiO 2 ( o-quartz = p-quartz) 0.101 0.47a.b 0.35 Si02 ( fi-quartz = cristobalite) 2.94151 1.93 0.318 GeO2 (Wile = quartz) 561231 11.51 4.0 CaSiO3 (wollastonite = pseudowollastonite) 5:0[311 0.12 3.6 Al2SiO5 (andalusite = sillimanite) -0.164 3.8815j 4.50 Al2SiO5 (sillimanite = kyanite) -0.511 -8.13L51 -13.5 MgSi03 (ortho = clino) -0.002 -0.37[51 0.16 MgSi03 (ortho = proto) 0.109 1.59[51 1.21 FeSi03 (ortho = clino) -0.11~2~~ -0.06 -0.03 MnSi03 (rhodonite = pyroxmangite) 0.25 Lz5J -1.03 -0.39 -0.39 MnSi03 (pyroxmangite = pyroxene) 0.88[251 -0.3 -2.66 NaAlSi308 (low albite = high albite) 13.51311 14.0 0.40 0.40 KAlSi 309 (microcline = sanidine) 11.1[51 0.027 15.0 a Treated as though allfirst order, though a strong higher order component bAH and AY are values near 1000 K, AV is AV ‘298 for all listings in table. 13

  14. Unstable (van der Waals) isotherms P = RT v − b − a v 2 high T low T 14

  15. Gibbs-Duhem: dµ = − sdT + vdP Z Integrate at T = const: µ = vdP + φ ( T ) Z B Assign μ (A) ≡ μ A : µ B − µ A = v ( P ) dP A 15

  16. for a given (low) T μ –T–P 16

  17. Unstable isotherm ~ underlying fundamental relation Physical isotherm ~ thermodynamic fundamental rel. Z O µ D = µ O v ( P ) dP = 0 ⇔ D 17

  18. First-order phase transitions in multi-component systems Single-component Multi-component r components U = U ( S , V , N ) U = U ( S , V , N 1 , …, N c ) N j where u = u ( s , v ) u = U ( s , v , x 1 , …, x c − 1 ) x j = N = N 1 + … + N c N • At equilibrium, U, H, F , G are convex functions of mole fractions x 1 ,…, x r • If stability criteria not satisfied, a phase transition occurs. 
 Mole fractions ( x j ), molar entropies ( s ), molar volumes ( v ) di ff er in each phase. • Example 1 : a two-component system (1,2) at a given T , P with two coexisting phases (I,II) μ ( I ) 1 ( T , P , x ( I ) 1 ) = μ ( II ) 1 ( T , P , x ( II ) … condition of equilibrium coexistence w.r.t. transfer of component 1 1 ) μ ( I ) 2 ( T , P , x ( I ) 1 ) = μ ( II ) 2 ( T , P , x ( II ) … condition of equilibrium coexistence w.r.t. transfer of component 2 1 ) Two equations to solve for x 1(I) and x 1(II) . • Example 2 : a two-component system (1,2) at a given T , P with three coexisting phases (I,II,III) μ ( I ) 1 ( T , P , x ( I ) 1 ) = μ ( II ) 1 ( T , P , x ( II ) 1 ) = μ ( III ) ( T , P , x ( III ) ) 1 1 μ ( I ) 2 ( T , P , x ( I ) 1 ) = μ ( II ) 2 ( T , P , x ( II ) 1 ) = μ ( III ) ( T , P , x ( III ) ) 2 1 Four equations to solve for only three variables x 1(I) , x 1(II), x 1(III) . ?? ⟶ Cannot independently specify T and P . Set one, the other is given by equilibrium coexistence. • Example 3 : a two-component system (1,2) at a given T , P with four coexisting phases (I,II,III) … 18

  19. Gibbs phase rule f = c − p + 2 # degrees of freedom = # components - # phases + 2 • Example 1 : pure H 2 O, coexistence of two phases … f = 1 - 2 + 2 = 1 … coexistence curves in the P–T diagram (s–l, l–g, s–g) • Example 2 : pure H 2 O, coexistence of ice, water, steam … f = 1 - 3 + 2 = 0 … triple point 19

  20. ?Phase diagram of mineral mixture? 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend