spin glass bottlenecks in quantum annealing
play

Spin-Glass Bottlenecks in Quantum Annealing Sergey Knysh SGT Inc., - PowerPoint PPT Presentation

Spin-Glass Bottlenecks in Quantum Annealing Sergey Knysh SGT Inc., NASA Ames Research Center Nature Communications 7, 12370 (2016). Quantum Adiabatic Annealing H e u r i s t i c a l g o r i t h m f o r t a c k l i n g N P - c o m p l e t e p r o


  1. Spin-Glass Bottlenecks in Quantum Annealing Sergey Knysh SGT Inc., NASA Ames Research Center Nature Communications 7, 12370 (2016).

  2. Quantum Adiabatic Annealing H e u r i s t i c a l g o r i t h m f o r t a c k l i n g N P - c o m p l e t e p r o b l e m s .  Kadowaki & Nishimori, PRE '98 H = − 1 2 ∑ z − ∑ z −Γ( t ) ∑ z σ k x J ik σ i h i σ i σ i Farhi et al. , Science '01 i ,k i i spin-flip dynamics objective function Transverse field slowly decreased to zero. Γ( t )  ∣ Ψ ( 0 ) 〉 = 1 N / 2 ∑ ∣ Ψ ( T ) 〉 = ∣ s m i n 〉 s ∈{± 1 } N ∣ s 〉 Ground state interpolates from to  2 Adiabatic condition d Γ/ d t ≪Δ E ⋅Δ Γ F o r L a n d a u - Z e n e r c r o s s i n g Δ E ∼Δ Γ  Gap closes at QCP in thermodynamic limit.  Finite-size scaling gives average-case complexity.  − N / 2 Example: 1 s t order phase transition in REM Δ E c ∼ 2 

  3. Continuous Phase Transition Critical scaling at 2 nd order QCP  Normalized GSE ( sing ) / N ∼ | γ a | E 0 (singular component): b E 1 − E 0 ∼γ Gap in PM phase: γ=Γ−Γ c Finite-size scaling:  − b a − b Δ E c ∼ N 1 − a − b Δ Γ c ∼ N Polynomial annealing rate avoids QCP bottleneck.  − 1 /ν ∼ N − 1 /( d ν) ΔΓ c ∼ξ a = 2 −α=( d + z )ν 1 / d ξ∼ L = N b = z ν − z ∼ N − z / d Δ E c ∼ξ

  4. Exceptions to Polynomial Scaling Disorder J k,k + 1 J k + 1 , k + 2 ⋯⋯⋯ 1D chain with i.i.d. random J k,k + 1 1 Δ E c ∼ e − c √ N “Finite-size” critical field Γ c ≈ ( J 12 J 23 ⋯ J n − 1, n ) n − 1  Different parts of the system become critical at different times  Slow dynamics as clusters of spins are flipped  Not an issue with all-to-all connectivity  “Fixable” by synchronizing phase transitions with local Γ i Frustration 1D loop with odd number of antiferromagnetic couplings  “Competition” between solutions 2 < IK I < J < K J  Develops exponentially small gap Polynomial gap at Γ c = K in the ordered phase, Γ<Γ c 2 − J 2 )( J 2 − I 2 ) ( K Γ * = 1 Exponential gap at I 2 + K 2 − 2 J 2 I

  5. Spin-Glass Bottlenecks  Spin-glass phase characterized by many valleys Santoro et al ., Science '02 Altshuler et al. , PNAS '10  Energy levels “reshuffled” as Γ changes Farhi et al ., PRE '12  But: Ground state is less sensitive (extreme value) Effect of the Transverse Field d spin flips  “Smoothes out” energy landscapes on scales ~Γ  Lowers energy of wide valleys −Γ d  Deep-and-narrow and shallow-and-wide valleys can come into resonance tunneling Fractal Energy Landscapes N h.b. =α ln Γ c  No intrinsic scale (Γ≪Γ c ) Γ min  Expected # of hard bottlenecks Γ min ∼ 1 N h.b. [Γ 1, Γ 2 ]= f (Γ 2 /Γ 1 ) Γ c ∼ 1 δ N  Additivity: N h.b. [Γ 1 ; Γ 2 ]= N h.b. [Γ 1 ; Γ ' ]+ N h.b. [Γ ' ; Γ 2 ]

  6. Associative Memory: Hopfield Network Nishimori & Nonomura, JPSJ '96 ( 1 ) ={ 1, − 1, − 1, … , 1 } ξ i C r a f t H a m i l t o n i a n e n c o d i n g p ` p a t t e r n s '  ( 2 ) ={− 1,1, − 1, … , − 1 } ξ i ⋯⋯⋯⋯⋯ p J ik = 1 N ∑ (μ) ξ k (μ) ξ i (μ) min =±ξ i s i μ= 1 Small p : `project' onto patterns  m = 1 N ∑ ⃗ z ⟩ ξ i ⟨ ^ ⃗ σ i i Barriers are O ( N )  Classical (Γ=0) gap is O (1)  attractors, ± O ( 1 ) Δ Γ c ∼ N − 2 / 3 − 1 / 3 Δ E c ∼ N QCP is the only bottleneck: ,  Capacity limit: p = O ( N ) m i n = ± s g n ∑ (μ) μ α μ ξ i s i Spurious states become globally stable:  Smaller barriers; classical gap vanishes asymptotically 

  7. Hopfield Model with Gaussian Patterns  Spurious states appear for p ≥2  Classical gap is O ( 1 / N )  Barriers are O ( √ N ) Mean Field Theory  Finite-temperature partition function β 1 2 ∫ ( ∑ 2 d t + ∑ ⃗ ξ i s i ( t )) K [ s i ( t )] Z (β)= ∑ degenerate to O ( N ) e 0 i i J ik = 1 [ { s i ( t ) } ] ξ i ⃗ ⃗ (# of kinks) × 1 ξ k 2 ln tanh (Γ Δ t ) N  Rewrite as a path integral using Hubbard-Stratonovich β − N 2 ∫ 2 ( t ) d t + ∑ ⃗ m ln Z i Z (β)= ∫ [ d ⃗ 1 2 2 ( ∑ ⃗ m ( t )] e ξ i s i ) 0 i ∝ ∫ d ⃗ m ⃗ 2 / 2 + ⃗ −⃗ ξ i s i m e m e i  Single-site partition function β β ∫ ∫ ( h i ( t ) ^ z +Γ ^ x ) d t h i ( t ) s ( t ) d t + K [ s ( t )] σ σ Z i = ∑ = Tr Τ e e h i ( t )=⃗ 0 0 ξ ⃗ m ( t ) [ s ( t )]

  8. Mapping to Ordinary Quantum Mechanics ● Saddle-point solution is stationary s 1 h i ̂ σ z h i m = 1 s k N ∑ ⃗ h i =⃗ ⃗ ξ i ξ i ⃗ m √ Γ s i 2 + h i 2 Γ ̂ σ x i replace sum by s N disorder average m ( t )≈ m Γ ( − sin ϑ( t ) cos ϑ( t ) ) ● Finite- N corrections: path integral is dominated by ⃗ ● is slow-varying ϑ( t ) β ( √ Γ 2 ) ) d t ln Z i = ∫ 2 + h i 2 ( t )+ O ( ( d h i / d t ) 0 ● Disorder realization – dependent partition function non-adiabatic corrections β − ∫ 2 / 2 + V Γ (ϑ) ) d t ( M ( d ϑ/ d t ) − N β⟨ F ⟩ ∫ [ d ⃗ Z (β)= e ϑ( t )] e 0 ● Low energy spectrum is equivalent to that of a particle on a ring ξ i =ξ i ( cos θ i sin θ i ) ⃗ 2 ξ i i √ Γ 2 + m Γ V Γ (ϑ)=− ∑ 2 sin 2 (ϑ−θ i )+ N ⟨ √ ⋯⟩

  9. Evolution of Random Potential i √ Γ V Γ (ϑ)=− ∑ 2 +[ m Γ ξ i sin (ϑ−θ i )] 2 + N ⟨ √ ⋯⟩ Scales as (central limit theorem) √ N Smooth near critical point 1 √ N V Γ (ϑ)= C + ∑ ( A k cos2 k ϑ+ B k sin2 k ϑ) 2 k A k ,B k = m k 2 k − 1 Γ Becomes increasingly rugged for small Γ Continuous Process Orthogonalize correlated 2D random process ∞ ∫ f Γ ⟨ζ n (θ)ζ n' (θ ' )⟩=δ nn' δ(θ−θ ' ) V Γ (ϑ)= ∑ ( n ) (ϑ−θ)ζ n (θ) d θ white noise n = 0 f n (ϑ) Choose to match covariance ⟨ V Γ (ϑ) V Γ ' (ϑ ' )⟩ ∞ √ Γ 2 +⋯×ξ 2 e −ξ ( n ) (ϑ)∝ ∫ 2 / 2 L n ( 1 ) (ξ 2 / 2 ) d ξ Use orthogonal polynomials (Laguerre) f Γ 0

  10. Evolution of Random Potential (cont'd) ∞ 1 √ N V Γ (θ)∝( F Γ ∗χ)(ϑ)+ ∑ ( n ) ∗η n )(ϑ)+ const ( G Γ n = 1 smoothing kernel classical potential brownian motion of width Γ  Convolution with raises energy of narrow valleys F Γ (ϑ)  2 nd term vanishes for Γ=0; comparable contribution for Γ>0 Classical potential Neglect near a global minimum 2 χ θ d √ N Γ 3 / 2 V 2 +χ=ζ 0 (ϑ) d ϑ Δθ∼Γ 3 / 2 Γ Δ ϕ∼Γ Condition on the fact that χ(ϑ)≥χ(θ * )=χ * ϕ θ Without losing generality ϑ * = 0, χ * = 0

  11. Classical Potential near Global Minimum υ= d χ ● Markov process in `time' ( is the `velocity') (χ , υ) ϑ d ϑ 2 p ∂ p ∂ϑ +υ ∂ p ∂ ∂χ− 1 2 = 0 2 ∂υ χ→+ 0 p (θ ; χ , υ)= 0 for υ> 0 lim ● Only include paths with : χ≥ 0 ● Renormalize probability so that it is conserved q (ϑ ; χ , υ)∝ p (ϑ ; χ , υ) ∫ P (Θ ; Χ , Υ | ϑ ; χ , υ) d Χ d Υ Χ> 0 survival probability P Θ (χ , υ) ● Before: p (Δ υ> 0 )= p (Δ υ< 0 )= 1 / 2 ● After: (the process with more likely to survive) υ ' >υ p (Δ υ> 0 )> 1 / 2 > p (Δ υ< 0 ) ∂υ ( 1 ∂ υ q ) ∂ P Θ + ∂ ● Probability is conserved but adds repulsion: P Θ

  12. “Stationary” Solution Green's function satisfies time-reversed PDE P (Θ ; Χ , Υ | ϑ ; χ , υ)= P (ϑ ; χ , −υ | Θ ; Χ , −Υ) Asymptotic form (independent of initial conditions): p (ϑ ; χ , υ)∼ A p * (χ , υ) α ϑ 3 / 2 , [υ]=[ϑ] 1 / 2 [χ]=[ϑ] Dimensional analysis: 2 α/ 3 p * (υ/χ 1 / 3 ) p * (χ , υ)=χ α= 1 4 + 3 n ODE for yields quantized eigenvalues p * (ν) 2 for n ≥ 0  Dimensionless `time' − 2 / 3 d ϑ d τ=χ  Dimensionless `velocity' 1 / 3 ν=υ/χ  Dimensionless `coordinate' μ= ln χ τ Regard as a Markov process in `time' (ϑ , χ , υ)

  13. Langevin Process ● PDE after the change of variables ∂ ν ( ∂ U q ) − 1 2 ¯ ∂¯ q 2 μ / 3 ∂ ¯ ∂ϑ +ν ∂¯ q q ∂ q ∂μ− ∂ ∂ τ + e 2 = 0 ∂ ν ¯ 2 ∂ ν 3 U ∼ ν 9 − ln p * (−ν) ● Describes a solution to a stochastic differential equation d ν ± =− U ' (ν) sgn (τ)+ζ(τ) d τ − 2 U (ν) ρ ( ν( 0 ) ) ∼ e ● Further integrated twice d ( ln χ) d ϑ 2 / 3 d τ =±χ =±ν ± d τ ● To yield a parametric representation ( χ(τ) , ϑ(τ) ) of function χ(ϑ) 3 / 2 ● but can drop by arbitrarily large percentage χ∼ϑ

  14. Results E n e r g y l a n d s c a p e i s a s e l f - s i m i l a r r a n d o m p r o c e s s  (every realization happens on some scale) 3 / 2 × λ × λ There will be realizations where two minima compete  Numerically integrate stochastic equations  Typical gap V (ϑ)∼ K 2 2 (ϑ−ϑ * ) 3 / 4 Δ E ∼ √ K / M ∼ Γ 1 / 4 N K ∼ √ N /Γ Minimum gap 2 M ∼ N /Γ 3 / 2 √ N V ∼Γ 3 / 4 Δ E ∼ e − √ MV Δ ϑ ∼ e − c (Γ N ) Δϑ∼Γ

  15. Discussion  Bottlenecks progressively easier toward the end of the algorithm (problem solved for ) Γ< 1 / N  Only become relevant for large problems N h.b. ≈α ln N > 1  Crossover from polynomial to α≈ 0.15 N c ∼ 1000 exponential complexity Cf. Sherrington-Kirkpatrick model: time to solution  Classical gap scales as 1 / √ N  Barrier heights scale as 1 / 3 N “easy” “hard”  Stronger disorder fluctuations, J ik ∼ 1 / √ N N N c

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend