spectral super resolution
play

Spectral super-resolution DS-GA 1013 / MATH-GA 2824 - PowerPoint PPT Presentation

Spectral super-resolution DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html Carlos Fernandez-Granda Spectral super-resolution Aim: Estimate frequencies of multisinusoidal


  1. Spectral super-resolution DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html Carlos Fernandez-Granda

  2. Spectral super-resolution Aim: Estimate frequencies of multisinusoidal signal s � g ( t ) := � c [ j ] exp ( − i 2 π f j t ) j = 1 where f 1 , f 2 , . . . , f s ∈ [ − 1 / 2 , 1 / 2 ] from n of samples g ( − ( n − 1 ) / 2 ) , g ( − ( n − 1 ) / 2 + 1 ) , . . . , g (( n − 1 ) / 2 )

  3. Spectral super-resolution Signal Data

  4. Dirac measure It’s a measure, not a function! � 1 if τ ∈ S � δ [ τ ] ( d u ) = 0 otherwise S For any function h we have � h ( τ ) if τ ∈ S � h ( u ) δ [ τ ] ( d u ) = 0 otherwise S

  5. Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 h k ( u ) µ g ( d u ) − 1 / 2

  6. Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 � 1 / 2 s � h k ( u ) µ g ( d u ) = c [ j ] � h k ( u ) δ [ f j ] ( d u ) − 1 / 2 − 1 / 2 j = 1

  7. Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 � 1 / 2 s � h k ( u ) µ g ( d u ) = � c [ j ] h k ( u ) δ [ f j ] ( d u ) − 1 / 2 − 1 / 2 j = 1 s � = � c [ j ] exp ( − i 2 π kf j ) j = 1

  8. Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 � 1 / 2 s � h k ( u ) µ g ( d u ) = c [ j ] � h k ( u ) δ [ f j ] ( d u ) − 1 / 2 − 1 / 2 j = 1 s � = � c [ j ] exp ( − i 2 π kf j ) j = 1 − n − 1 ≤ k ≤ n − 1 = g ( k ) , 2 2

  9. The periodogram Prony’s method Subspace methods

  10. Periodogram y ∈ C n is The periodogram of � n − 1 2 � P � y ( u ) := � y [ k ] h k ( u ) k = − n − 1 2

  11. Spectrum of Dirichlet kernel D − k c k c

  12. Dirichlet kernel d 2 k c + 1 1 1 − 2 k c +1 2 k c +1 − 1 / 2 1 / 2

  13. Periodogram as a convolution The periodogram of g ( − ( n − 1 ) / 2 ) , g ( − ( n − 1 ) / 2 + 1 ) , . . . , g (( n − 1 ) / 2 ) equals s � P g ( u ) = � c [ j ] d [ f j ] ( u ) j = 1

  14. Time shift The τ -shifted version of a function f ∈ L 2 [ − 1 / 2 , 1 / 2 ] is f [ τ ] ( t ) := f ( t − τ ) where the shift is circular (it wraps around) For any shift τ F [ τ ] [ k ] = exp ( − i 2 π k τ ) F [ k ]

  15. Proof The Fourier coefficients of the shifted Dirichlet kernel equal � exp ( − i 2 π kf ) if | k | ≤ ( n − 1 ) / 2 D [ f ] [ k ] := 0 otherwise

  16. Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1

  17. Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = � c [ j ] D [ f j ] [ k ] j = 1

  18. Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = c [ j ] D [ f j ] [ k ] � j = 1 n − 1 2 � P g ( u ) = g ( k ) h k ( u ) k = − n − 1 2

  19. Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = � c [ j ] D [ f j ] [ k ] j = 1 n − 1 2 � P g ( u ) = g ( k ) h k ( u ) k = − n − 1 2 n − 1 s 2 � � = � c [ j ] D [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2

  20. Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = � c [ j ] D [ f j ] [ k ] j = 1 n − 1 2 � P g ( u ) = g ( k ) h k ( u ) k = − n − 1 2 n − 1 s 2 � � = c [ j ] � D [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2 s � = � c [ j ] d [ f j ] ( u ) j = 1

  21. Periodogram as a convolution Periodogram Data 0 5 10

  22. Periodogram as a convolution Periodogram Data 0 5 10 15 20

  23. Periodogram as a convolution Periodogram Data 0 10 20 30 40

  24. Periodogram as a convolution Periodogram Data 0 10 20 30 40 50

  25. Problem Signal (magnitude) Periodogram

  26. Windowed periodogram y ∈ C n is The windowed periodogram of � n − 1 2 � y ( u ) := W [ k ] g ( k ) h k ( u ) . P w ,� k = − n − 1 2 � n − 1 − n − 1 � � � W , . . . , W are the Fourier coefficients of a 2 2 window function

  27. Windowing Data Window function Windowed data

  28. Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2

  29. Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ k ] exp ( − i 2 π f j k ) h k ( u ) j = 1 k = − n − 1 2

  30. Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ k ] exp ( − i 2 π f j k ) h k ( u ) j = 1 k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2

  31. Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ k ] exp ( − i 2 π f j k ) h k ( u ) j = 1 k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2 s � = � c [ j ] w [ f j ] ( u ) j = 1

  32. Problem Signal (magnitude) Periodogram

  33. Windowed periodogram Signal (magnitude) Windowed periodogram

  34. Periodogram ∆ = 1 . 2 ∆ = 2 . 4 n n

  35. Gaussian periodogram ∆ = 1 . 2 ∆ = 2 . 4 n n

  36. The periodogram Prony’s method Subspace methods

  37. Prony polynomial Signal (magnitude) Prony polynomial (magnitude)

  38. Prony polynomial Given any f 1 , f 2 , . . . , f s , there exists a nonzero complex polynomial of order s s � P [ k ] z k p ( z ) := k = 0 such that its s roots are equal to exp ( i 2 π f 1 ) , exp ( i 2 π f 2 ) , . . . , exp ( i 2 π f s )

  39. Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1

  40. Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots

  41. Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots s � P [ k ] z k p ( z ) = 1 + k = 1

  42. Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots s � P [ k ] z k p ( z ) = 1 + k = 1 is nonzero since p ( 0 ) = 1

  43. Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots s � P [ k ] z k p ( z ) = 1 + k = 1 is nonzero since p ( 0 ) = 1 Reveals the frequencies p ( exp ( i 2 π f j )) = 0 1 ≤ j ≤ s

  44. Prony system Let s − n − 1 ≤ k ≤ n − 1 � � c [ j ] exp ( − i 2 π kf j ) g ( k ) := 2 2 j = 1 For any integer b s � P [ l ] g [ l − b ] = 0 l = 0 The equation only involves the data as long as − n − 1 ≤ − b ≤ s − b ≤ n − 1 2 2

  45. Proof s � P [ l ] g [ l − b ] l = 0

  46. Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0

  47. Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0

  48. Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0 � 1 / 2 = exp ( i 2 π bu ) p ( exp ( − i 2 π u )) µ g ( d u ) − 1 / 2

  49. Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0 � 1 / 2 = exp ( i 2 π bu ) p ( exp ( − i 2 π u )) µ g ( d u ) − 1 / 2 s � � c [ j ] exp ( i 2 π bf j ) p ( exp ( − i 2 π f j )) = j = 1

  50. Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0 � 1 / 2 = exp ( i 2 π bu ) p ( exp ( − i 2 π u )) µ g ( d u ) − 1 / 2 s � � c [ j ] exp ( i 2 π bf j ) p ( exp ( − i 2 π f j )) = j = 1 = 0

  51. Prony’s method 1. Solve the system of equations  g ( 1 ) g ( 2 ) · · ·   g ( 0 )  g ( s ) g ( 0 ) g ( 1 ) · · · g ( s − 1 ) g ( − 1 )  �     P = −     · · · · · · · · · · · · · · ·    g ( − s + 2 ) g ( − s + 3 ) · · · g ( 1 ) g ( − s + 1 ) 2. Compute the roots z 1 , . . . , z s of the polynomial s � � P [ k ] z k p ( z ) := 1 + k = 1 3. For every root on the unit circle z j = exp ( i 2 πτ ) include τ in the set of estimated frequencies

  52. Without noise it works! Signal (magnitude) Prony polynomial (magnitude)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend