spectral performance of nitsche s method
play

Spectral Performance of Nitsches Method Isaac Harari, Uri Albocher - PowerPoint PPT Presentation

Spectral Performance of Nitsches Method Isaac Harari, Uri Albocher Tel Aviv University December 2018 also, Afeka, Tel Aviv Academic College of Engineering A great deal of the ICASE research was conducted. . . on one of the many


  1. Spectral Performance of Nitsche’s Method Isaac Harari, Uri Albocher ∗ Tel Aviv University December 2018 ∗ also, Afeka, Tel Aviv Academic College of Engineering

  2. A great deal of the ICASE research was conducted. . . on one of the many oversize blackboards. . . Saul Abarbanel was a prominent practitioner of this art. . . [Salas, 2018] Eigenvalues, stability of IBVPs: [Carpenter-Gottlieb-A., 1993] [A.-Chertock, 2000] 1

  3. Background Interface problems: • Composites with complex microstructure • Multiphase flow • Biofilm growth • Interaction Challenge: • Stationary interface with complex geometry • Interface with evolving geometry Meshing strategies: + R • Compatible with remeshing • Incompatible with special treatment R - Embedded features: Finite element mesh non-conforming with interface. 2

  4. Approaches (related to DG & IP): • X-FEM • Immersed FEM • CutFEM [Hansbo, Burman, Kreiss] • Finite Cell • Universal mesh • Shifted boundary Dirichlet boundary conditions ( ∼ interface constraints): • Conventional approach: conforming mesh + interpolation • Weak enforcement (fluids [Bazilevs-Hughes, 2007]) – Hybrid formulation, Lagrange multipliers (mortar, FETI) – Penalty methods – Nitsche’s method 3

  5. Nitsche’s method Relaxation of essential boundary conditions [Courant, 1943]. Lagrange multipliers for Dirichlet constraints [Jones, 1964], [Babuˇ ska, 1973]. inf-sup condition [Pitk¨ aranta, 1979–81]. Least-squares stabilization to circumvent inf-sup [Barbosa-Hughes, 1991]. Bubble stab. [Mourad-Dolbow-H., 2007], RFB [Dolbow-Franca, 2008]. Penalty method + variational consistency [Nitsche, 1971]. Rediscovered and connected to stabilized methods [Stenberg, 1995]. Nitsche coeff. ≡ stab. parameter. Used: domain decomposition, contact, discont. Galerkin, meshless... 4

  6. Basic idea −∇ · ( κ ∇ u ) = f in Ω u = g on Γ Weak form, essential bc’s: u = g , v = 0 on Γ � � ∇ v · κ ∇ u d Ω = vf d Ω Ω Ω u, v ∈ H 1 (Ω) Hybrid approach: Lagrange multiplier λ (& µ ), � � � ∇ v · κ ∇ u d Ω − vλ d Γ = vf d Ω Ω Γ Ω � � − µu d Γ = − µg d Γ Γ Γ 5

  7. Euler-Lagrange equation, flux weakly imposes Dirichlet bc’s λ = κ ∇ u · n on Γ Stabilized formulation, parameter α > 0 λ = κ ∇ u · n + α ( g − u ) on Γ Nitsche method (reduces to weak form when u, v satisfy bc’s) � � � � ∇ v · κ ∇ u d Ω − vκ ∇ u · n d Γ − κ ∇ v · n u d Γ + vαu d Γ = Ω Γ Γ Γ � � � vf d Ω − κ ∇ v · n g d Γ + vαg d Γ Ω Γ Γ “Penalty” method + variational consistency (easily verified). 6

  8. α = ? Strategies: • Ad hoc 1. Unstabilized 2. Empirical • Discrete trace inequalities 1. Bound [H.-Hughes, ’92], [Warburton-Hesthaven, 2003], [Evans-Hughes, 2013] 2. Compute 7

  9. α = ? Discrete trace inequality, config. dep. const., C > 0 � κ ∇ v h · n � 2 Γ ≤ C � v h � 2 κ [Barbosa-Hughes, 1991], [Stenberg, 1995]. α > C = ⇒ coercivity Find C from global gen. eigenvalue prob. [Griebel-Schweitzer, 2003]. Elem.-level inequality, estimate C (only for elements on boundary). E.g. linear triangle L = meas(Γ e ∩ Γ) C ≥ κL/A, α e = 2 C . In practice, for good numerical performance 8

  10. Spectral behavior Weak enforcement = ⇒ + dof’s = ⇒ + sol’ns (indef.) Stabilization = ⇒ coercivity Approx. of exact spectrum? Spectral investigations: • Characterize operator. • Insight to BVP. • Nitsche’s method for eigenvalue problems. 9

  11. Upshot Main goal: ≈ spectrum of std. discrete formulation. Challenge: Complementary discrete sol’ns. Main result: Standard 350 Reduced Nitsche Reduced Nitsche spectrum 300 ≈ spectrum of 250 std. discrete formulation. 200 L 2 150 Favorable implications: BVP (condition) 100 eigenvalue problems 50 explicit dynamics. 0 0 5 10 15 20 25 30 35 modal index 10

  12. Terminology Compatible discretization: Cont. of unknown field + Dirichlet bc’s/interface cond’s. Conforming mesh: Elements are fitted (matched, uncut, untrimmed, aligned?). + boundary/interface. Nitsche’s method enforces surface constraints weakly: Framework for incompatible discretization. Accommodates non-conforming meshes with cut (trimmed) elements. 11

  13. Spectral behavior of Nitsche’s method Elliptic eigenvalue problem ∆ u + λu = 0 in Ω u = 0 on Γ u, w ∈ H 1 (Ω) Nitsche formulation (bc’s) ( ∇ w, ∇ u ) − ( w, u ,n ) Γ − ( w ,n , u ) Γ + α ( w, u ) Γ − λ ( w, u ) = 0 � �� � a ( w, u ) For u, w ∈ H 1 0 (Ω) , reduces to std. formulation. 12

  14. Parameter sensitivity Specific eigenpair { λ r , u r } , r = 1 , 2 , . . . a ( u r , u r ) − λ r ( u r , u r ) = 0 Rayleigh quotient R ( v ) = a ( v, v ) such that λ r = R ( u r ) � v � 2 Boundary quotient B ( v ) = � v � 2 dλ r Γ show that dα = B ( u r ) � v � 2 Note (stablization ∼ stiffen.?) dλ dα ≥ 0 13

  15. Complementary discrete solutions Eigenvalues ( ∈ R + ): Weak form 0 < λ 1 ≤ λ 2 ≤ . . . Eigenfunctions u r ∈ H 1 0 (Ω) , L 2 (Ω) -ortho. u h ∈ V h 0 ⊂ H 1 dim V h Std. formulation 0 (Ω) , 0 = N { λ h r , u h N eigenpairs, r } ≈ { λ r , u r } λ h u h r ≥ λ r , r retain L 2 (Ω) -ortho. � � u h ∈ V h ⊂ H 1 (Ω) , dim V h = N + dim V h / V h Nitsche 0 N eigenpairs + ?, retain L 2 (Ω) -ortho. V h = V h � � ⊥ V h 0 ⊕ 0 � ⊥ = dim � � � V h V h / V h dim 0 0 14

  16. Example: cut bilinear quad dim V h = 4 Aligned Unaligned 4 3 N 1 ,N 4 N 2 ,N 3 Γ 1 2 � � � � V h / V h V h / V h dim = 2 dim =? 0 0 15

  17. Illustrative construction Consider 0 = span { u r } N V h r =1 Decompose u h = u 0 + u ⊥ , u 0 = Pu h ∈ V h 0 , . . . Nitsche decouples ( ∇ w 0 , ∇ u 0 ) − λ ( w 0 , u 0 ) = 0 a ( w ⊥ , u ⊥ ) − λ ( w ⊥ , u ⊥ ) = 0 N eigenpairs (exact), { u r , R ( u r ) } , st B ( u r ) = 0 � � : projections of u h along V h � � ⊥ V h / V h V h Complementary pairs dim 0 onto 0 0 � � N u h , u r � u h − u ⊥ = � u r � 2 u r & R ( u ⊥ ) ( > 0 for α > C ) r =1 � u ⊥ � → 0 as N → ∞ B ( u ⊥ ) > 0 16

  18. Simple example � � V h = span { 1 , cos( πx/L ) , sin( rπx/L ) } V h / V h Ω =]0 , L [ , dim = 2 , 0 � � ( rπ/L ) 2 , sin( rπx/L ) N eigenpairs, , B ( u r ) = 0 2 complementary solutions u = 1 u = cos ( π x / L ) 1.0 1.0 N = 10 N = 10 0.8 100 100 0.5 0.6 0.0 0.4 u ⊥ u ⊥ 0.2 - 0.5 0.0 - 1.0 - 0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 x L x L Edge “modes”: support ≈ boundary strips of width L/N . B ( u ⊥ ) ∼ π 2 N/ (2 L ) , R ( u ⊥ ) ∼ B ( u ⊥ )( α ∓ 2 N/L ) , C = 2 N/L 17

  19. In gen. Nitsche, u h ∈ V h ⊂ H 1 (Ω) , doesn’t decouple, but still useful V h = V h � � ⊥ V h 0 ⊕ 0 Eigenpairs, { λ h r , u h r } approx. { λ r , u r } , r = 1 , 2 , . . . , dim V h 0 ∂λ h ∂α = B ( u h r r ) ≈ 0 � ⊥ , � � � V h V h / V h Complementary sol’ns, approx’s of ft’ns in # = dim 0 0 support ≈ strip O ( h ) along boundary. B > 0 = ⇒ R ’s (indef.) increase w/ α ( → > 0) . Artifact of discretization (mesh- & α -dep.) Mechanism to enforce constraint. 18

  20. Numerical studies Consider entire spectrum. Cut elements (parallel to mesh lines, vol. fraction η ): • Highlight essential features (cf. std. formulations). • Structured meshes of bilinear elem’s, C = 1 / ( ηh ) . “Sliver” cut can lead to poor discretization [de Prenter et al., 2018] Std. discrete formulation: Finite # of discrete eigenpairs approx. lower exact eigenpairs. Eigenvalues ( ∈ R + ): approx. ≥ exact. Nitsche formulation: + complementary sol’ns. Wish to separate two types of sol’ns. Eigenvalues are positive ( ≥ exact?). R ’s of complementary sol’ns are indefinite ( α < C ). 19

  21. Rectangular domain L × 2 L Dirichlet bc’s top & bottom. n 2 + m 2 / 4 π 2 � � λL 2 = � nπx � � mπ y � u = cos sin L 2 L 4 × 8 elements, Std./Nitsche on top. η = 1 , unif. squares Uni = Nitsche = Std η < 1 , Uni unchanged Nitsche = unif. rect’s stretched vertically Std = Nitsche, but compatible Nitsche: +5 complementary sol’ns. (Similar for L-shaped domain w/re-entrant corner.) 20

  22. α = 0 , η = 0 . 5 Eigenfunctions (first 8) ≈ 0 on Γ = ⇒ B ( u ) ≈ 0 . Complementary Edge “modes”: support ≈ cut elements. Idealize: support = cut elements = ⇒ B ( u ) ≈ 3 / ( ηh ) . 21

  23. α = 0 , vary η η = 1 0 . 5 0 . 2 0 . 1 0 . 01 Eigenft’n #3 Complem. #2 − 3 R ( u ) ≈ ( ηh ) 2 22

  24. Eigenpairs vs. complementary sol’ns α = 0 B ( u ) separates solutions 800 = 1 Uni Std = 0.5 700 3.0 Nitsche = 0.1 = 0.1 600 = 0.01 2.5 500 2.0 h ( u ) 400 L 2 1.5 300 200 = 0.5 1.0 100 0.5 0 0.0 100 0 5 10 15 20 25 30 35 modal index As η decreases: Prediction B ( u ) ≈ 3 / ( ηh ) for complementary improves. Nitsche e-values ≈ Std, split from Uni for higher modes. R ’s of complementary sol’ns become more negative. 23

  25. Dependence on α dλ Recall dα = B ( u ) Idealized � dλ 0 , eigenvalues dα ≈ 3 / ( ηh ) , complementary (in fact 3 . 3 / ( ηh ) ) η = 0 . 5 η = 0 . 1 800 800 600 600 400 400 L 2 L 2 200 200 0 0 200 200 0 1 2 3 0 1 2 3 / C / C Veering present, region more restricted as η decreases. 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend