space variant directional regularisation for image
play

Space-variant directional regularisation for image restoration - PowerPoint PPT Presentation

Space-variant directional regularisation for image restoration problems Luca Calatroni CMAP, Ecole Polytechnique CNRS joint work with: M. Pragliola, A. Lanza, F. Sgallari (University of Bologna) Computational Imaging workshop, Semester


  1. Space-variant directional regularisation for image restoration problems Luca Calatroni CMAP, ´ Ecole Polytechnique CNRS joint work with: M. Pragliola, A. Lanza, F. Sgallari (University of Bologna) Computational Imaging workshop, Semester program in Computer Vision ICERM March 18-22 2019 Providence, USA

  2. Introduction

  3. Imaging inverse problems Inverse problem formulation Given f , seek u such that f = Ku + n where K (known) models blur and n noise in the data. Task : compute reconstruction u ∗ . Different viewpoints. . . 1

  4. Imaging inverse problems Inverse problem formulation Given f , seek u such that f = Ku + n where K (known) models blur and n noise in the data. Task : compute reconstruction u ∗ . Different viewpoints. . . Optimisation Statistics PDEs Maximise posterior: Evolution problem MAP estimation u ∗ ∈ argmax u ∗ ∈ argmin  P ( u ; f , K ) − log ( P ( u ) P ( f , K ; u )) u t = −∇ R ( u ) − µ ∇ Φ( Ku ; f )  u = ⇒ u = ⇒   u (0) = f Use Bayes’ formula Variational regularisation:   b.c.  u ∗ ∈ argmin P ( u ) P ( f , K ; u ) u ∗ ∈ argmax R ( u )+ µ Φ( Ku ; f ) Get u ∗ as the steady state u P ( f ) u of the system above Discrete/continuous framework. Analogies : → P ( u ), R ( u ) encode prior assumptions on u ( topic of this talk! ) - P ( f , K ; u ), Φ( f , K ; u ) describe noise statistics 1

  5. Imaging inverse problems Inverse problem formulation Given f , seek u such that f = Ku + n where K (known) models blur and n noise in the data. Task : compute reconstruction u ∗ . Different viewpoints. . . Optimisation Statistics Maximise posterior: MAP estimation u ∗ ∈ argmax u ∗ ∈ argmin P ( u ; f , K ) − log ( P ( u ) P ( f , K ; u )) u u Use Bayes’ formula Variational regularisation: u ∗ ∈ argmin P ( u ) P ( f , K ; u ) u ∗ ∈ argmax R ( u )+ µ Φ( Ku ; f ) u P ( f ) u Discrete/continuous framework. 1

  6. Tailored image regulariser? Image model adapted to local features? 2

  7. Statistical viewpoint: Markov Random Fields Standard image priors are based on stationary Markov Random Field modelling n n � � P ( u ) = 1 exp ( − α V N i ( u ) ) = 1 � � − α Z exp V N i ( u ) , Z i =1 i =1 where α > 0, N i is the clique around i and V N i is the Gibbs’ potential in N i . 3

  8. Statistical viewpoint: Markov Random Fields Standard image priors are based on stationary Markov Random Field modelling n � � � � P ( u ) = 1 = 1 � − α TV ( u ) − α � ( ∇ u ) i � 2 Z exp Z exp , i =1 where α > 0 and V N i ( u ) = � ( ∇ u ) i � 2 . 3

  9. Statistical viewpoint: Markov Random Fields Standard image priors are based on stationary Markov Random Field modelling � � � n � P ( u ) = 1 = 1 � Z exp − α TV ( u ) Z exp − α � ( ∇ u ) i � 2 , i =1 where α > 0 and V N i ( u ) = � ( ∇ u ) i � 2 . Interpretation q := �∇ u � 2 is distributed locally as a α - half-Laplacian distribution:  α exp( − α q i ) for q i ≥ 0 ,  P ( q i ; α ) =  0 for q i < 0 , and α describes image scales. One-parameter family describing all pixel features. . . too restrictive? 3

  10. Variational and PDE approach: TV regularisation n � TV ( u ) = � ( ∇ u ) i � 2 i =1 1 Rudin, Osher, Fatemi, ’92 4

  11. Variational and PDE approach: TV regularisation n � TV ( u ) = � ( ∇ u ) i � 2 i =1 Variational model PDE model (non-linear diffusion) E ( u ) = TV ( u ) + λ 2 � u − f � 2 u t = p + λ ( f − u ) , p ∈ ∂ TV ( u ) 2 Seek u fitting the data with low TV: edges preservation & noise removal 1 ! (a) f (b) Tikhonov (c) TV Edge-preserving non-linear diffusion PDE. . . 1 Rudin, Osher, Fatemi, ’92 4

  12. Introduction Describing anisotropy

  13. Modelling anisotropy Anisotropy operators For all x ∈ Ω, let λ : Ω → R 2 be a positive vector field and let θ : Ω → [0 , 2 π ) describe local orientation. � cos θ ( x ) � λ 1 ( x ) � � 0 sin θ ( x ) Λ ( x ) := , R θ ( x ) := . 0 λ 2 ( x ) − sin θ ( x ) cos θ ( x ) 5

  14. Modelling anisotropy Anisotropy operators For all x ∈ Ω, let λ : Ω → R 2 be a positive vector field and let θ : Ω → [0 , 2 π ) describe local orientation. � cos θ ( x ) � λ 1 ( x ) � � 0 sin θ ( x ) Λ ( x ) := , R θ ( x ) := . 0 λ 2 ( x ) − sin θ ( x ) cos θ ( x ) M λ ,θ := Λ R θ is the anisotropic metric and W λ ,θ := M ⊺ λ ,θ M λ ,θ . Note : if z ( x ) := (cos θ ( x ) , sin θ ( x )), then: � � λ 1 ( x ) ∂ z ( x ) u ( x ) M λ ,θ ∇ u ( x ) = ⇒ locally weighted gradient along z λ 2 ( x ) ∂ z ( x ) ⊥ u ( x ) 5

  15. Modelling anisotropy Anisotropy operators For all x ∈ Ω, let λ : Ω → R 2 be a positive vector field and let θ : Ω → [0 , 2 π ) describe local orientation. � cos θ ( x ) � λ 1 ( x ) � � 0 sin θ ( x ) Λ ( x ) := , R θ ( x ) := . 0 λ 2 ( x ) − sin θ ( x ) cos θ ( x ) M λ ,θ := Λ R θ is the anisotropic metric and W λ ,θ := M ⊺ λ ,θ M λ ,θ . Note : if z ( x ) := (cos θ ( x ) , sin θ ( x )), then: � � λ 1 ( x ) ∂ z ( x ) u ( x ) M λ ,θ ∇ u ( x ) = ⇒ locally weighted gradient along z λ 2 ( x ) ∂ z ( x ) ⊥ u ( x ) Using this formalism: • Anisotropic diffusion: � � u t = div W λ ,θ ∇ u • Corresponding directional energy: � � � � 2 dx E λ ,θ ( u ) := � M λ ,θ ∇ u Ω 5

  16. Directional regularisation for imaging: previous work - Statistics of natural images : Generalised Gaussian PDFs (Mallat, ’89), Laplace (Green, ’92), non-stationary MRFs & optimisation (Lanza, Morigi, Pragliola, Sgallari, ’16, ’18),. . . ; - Directional variational regularisation : Variable exponent (Chen, Levine, Rao, ’06), DT(G)V (Bayram, ’12, Kongskov, Dong, Knudsen, ’17, Parisotto, Sch¨ onlieb, Masnou, ’18), . . . - Application to inverse problems : Limited Angle Tomography (Tovey, Benning et al., ’19), . . . - PDEs : structure tensor modelling (Weickert, ’98).  u t = div ( D ( J ρ ( ∇ u σ )) ∇ u ) in Ω × (0 , T ]    � D ( J ρ ( ∇ u σ ) ∇ u ) , n � = 0 on ∂ Ω   u (0 , x ) = f ( x ) in Ω ,  where for convolution kernels K ρ , K σ � � J ρ ( ∇ u σ ) := K ρ ∗ ∇ u σ ⊗ ∇ u σ , u σ := K σ ∗ u . and D is a smooth and symmetric diffusion tensor. - Consistent numerical schemes (Fehrenbach, Mirebeau, ’14,. . . ). 6

  17. Directional regularisation for imaging: previous work - Statistics of natural images : Generalised Gaussian PDFs (Mallat, ’89), Laplace (Green, ’92), non-stationary MRFs & optimisation (Lanza, Morigi, Pragliola, Sgallari, ’16, ’18),. . . ; - Directional variational regularisation : Variable exponent (Chen, Levine, Rao, ’06), DT(G)V (Bayram, ’12, Kongskov, Dong, Knudsen, ’17, Parisotto, Sch¨ onlieb, Masnou, ’18), . . . - Application to inverse problems : Limited Angle Tomography (Tovey, Benning et al., ’19), . . . - PDEs : structure tensor modelling (Weickert, ’98).  u t = div ( D ( J ρ ( ∇ u σ )) ∇ u ) in Ω × (0 , T ]    � D ( J ρ ( ∇ u σ ) ∇ u ) , n � = 0 on ∂ Ω   u (0 , x ) = f ( x ) in Ω ,  where for convolution kernels K ρ , K σ � � J ρ ( ∇ u σ ) := K ρ ∗ ∇ u σ ⊗ ∇ u σ , u σ := K σ ∗ u . and D is a smooth and symmetric diffusion tensor. - Consistent numerical schemes (Fehrenbach, Mirebeau, ’14,. . . ). Common problem Tailored regularisation adapted to local image orientation/structures? 6

  18. Introduction Variational space-variant regularisation

  19. Space-variant and directional regularisation models Discrete formulation. Let Ω be the image domain with | Ω | = n . n � � ( ∇ u ) i � 2 TV ( u ) = i =1 7

  20. Space-variant and directional regularisation models Discrete formulation. Let Ω be the image domain with | Ω | = n . n � � ( ∇ u ) i � p TV p ( u ) = 2 , i =1 Enforcing sparsity : - p = 2 : Tikhonov regularisation (Tikhonov, Arsenin, ’77). - p = 1 : Total Variation (Rudin, Osher, Fatemi, ’92). - 0 < p < 1 : Non-convex regularisation (Hinterm¨ uller, Wu, Valkonen, ’13, ’15, Nikolova, Ng, Tam, ’10). 7

  21. Space-variant and directional regularisation models Discrete formulation. Let Ω be the image domain with | Ω | = n . n � TV sv � ( ∇ u ) i � p i p ( u ) = 2 i =1 Space-variant modelling : - 1 ≤ p i ≤ 2 : Convex, space-variant regularisation (Blomgren, Chan, Mulet, Wong, ’97, Chen, Levine, Rao, ’06). - p i ∈ ( 0 , 2 ] : Non-convex space-variant regularisation (Lanza, Morigi, Pragliola, Sgallari, ’16, ’18). 7

  22. Space-variant and directional regularisation models Discrete formulation. Let Ω be the image domain with | Ω | = n . n � � M λ i ,θ i ( ∇ u ) i � p DTV p ( u ) = 2 , θ i ∈ [0 , 2 π ) i =1 where M λ i ,θ i = Λ i R θ i as before. Directional modelling : - p = 2 : Anisotropic diffusion (Weickert, ’98). - p = 1 : Directional Total (Generalised) Variation for dominant direction θ i ≡ ¯ θ (Kongskov, Dong, Knudsen, ’17) and inverse problems (Tovey, Benning et al., ’19). Combine (possibly non-convex) space-variance AND directional modelling? 7

  23. A flexible directional & space-variant regularisation

  24. A flexible directional & space-variant regularisation Statistical motivation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend