space time domain decomposition methods for linear and
play

Spacetime domain decomposition methods for linear and nonlinear - PowerPoint PPT Presentation

Spacetime domain decomposition methods for linear and nonlinear diffusion problems Michel Kern with T.T.P . Hoang, E. Ahmed, C. Japhet, J. Roberts, J.Jaffr INRIA Paris Maison de la Simulation Work supported by Andra & ANR


  1. Space–time domain decomposition methods for linear and non–linear diffusion problems Michel Kern with T.T.P . Hoang, E. Ahmed, C. Japhet, J. Roberts, J.Jaffré INRIA Paris — Maison de la Simulation Work supported by Andra & ANR Dedales EXA-DUNE — SPPEXA 2016 Symposium January 2016 INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 1 / 19

  2. Outline Motivations and problem setting 1 Linear problem 2 Non-linear problem 3 INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 2 / 19

  3. Outline Motivations and problem setting 1 Linear problem 2 Non-linear problem 3 INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 3 / 19

  4. Simulation of the transport of radionuclides around a repository Cell Access Drift Host rock Bentonite plug Backfill Vitrified waste Concrete Symetry Calculation area Far-field simulation Near-field simulation Challenges Different materials → strong heterogeneity, different time scales. Large differences in spatial scales. INRIA-SCIENTIFIQUE-UK-R Long-term computations. M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 4 / 19

  5. Simulation of the transport of radionuclides around a repository Cell Access Drift Host rock Bentonite plug Backfill Vitrified waste Concrete Symetry Calculation area Far-field simulation Near-field simulation Challenges Different materials → strong heterogeneity, ⇒ Domain Decomposition methods different time scales. Global in Time Large differences in spatial scales. INRIA-SCIENTIFIQUE-UK-R Long-term computations. M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 4 / 19

  6. Model problem: Simplified model for two–phase immiscible flow Fractional flow (global pressure), with Kirchoff transformation Neglect advection (focus on capillary trapping) : decouple pressure from saturation, Enchery et al. (06), Cances (08) Simplified system: Nonlinear (degenerate) diffusion equation ω∂ t S − ∆ φ ( S ) = 0 in Ω × [ 0 , T ] � S 0 λ ( u ) π ′ ( u ) du φ ( S ) = ω porosity S α water saturation λ mobility π capillary pressure (increasing) INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 5 / 19

  7. Discontinuous capillary pressure: transmission conditions Two subdomains ¯ Ω = ¯ Ω 1 ∪ ¯ 0 . Γ = ¯ Ω 1 ∩ ¯ Ω 2 , Ω 1 ∩ Ω 2 = / Ω 2 P_c2(1) P_c1(1) Capillary pressure P_c P_c2(0) P_{c1}(0) 0 s_2 s_1 1 Saturation Transmission conditions on the interface Continuity of capillary pressure π 1 ( S 1 ) = π 2 ( S 2 ) on Γ Continuity of the flux ∇ φ 1 ( S 1 ) . n 1 = ∇ φ 2 ( S 2 ) . n 2 on Γ Chavent – Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13) INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 6 / 19

  8. Space–time domain decomposition Domain decomposition in space y x INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 7 / 19

  9. Space–time domain decomposition Domain decomposition in space t y x INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 7 / 19

  10. Space–time domain decomposition Domain decomposition in space t y x INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 7 / 19

  11. Space–time domain decomposition Domain decomposition in space t y x Discretize in time and apply DD algorithm at each time step: ◮ Solve stationary problems in the subdomains ◮ Exchange information through the interface Use the same time step on the whole domain. INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 7 / 19

  12. Space–time domain decomposition Space-time domain decomposition Domain decomposition in space t t y y x x Discretize in time and apply DD algorithm at each time step: ◮ Solve stationary problems in the subdomains ◮ Exchange information through the interface Use the same time step on the whole domain. INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 7 / 19

  13. Space–time domain decomposition Space-time domain decomposition Domain decomposition in space t t y y x x Solve time-dependent problems in the Discretize in time and apply DD subdomains algorithm at each time step: Exchange information through the space-time interface ◮ Solve stationary problems in the subdomains Enable local discretizations both in space and in time ◮ Exchange information through the interface Minimize number of communication between subdoains Use the same time step on the whole domain. − → local time stepping INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 7 / 19

  14. Outline Motivations and problem setting 1 Linear problem 2 Non-linear problem 3 INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 8 / 19

  15. Linear diffusion problem ◮ Time-dependent diffusion equation + homogeneous Dirichlet BC & IC c ( · , 0 ) = c 0 . ω∂ t c + div ( − D ∇ c ) = f in Ω × ( 0 , T ) , INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 9 / 19

  16. Linear diffusion problem ◮ Time-dependent diffusion equation + homogeneous Dirichlet BC & IC c ( · , 0 ) = c 0 . ω∂ t c + div ( − D ∇ c ) = f in Ω × ( 0 , T ) , ◮ Equivalent multi-domain formulation obtained by solving subproblems ω∂ t c i + div ( − D ∇ c i ) = f in Ω i × ( 0 , T ) = 0 on ∂ Ω i ∩ ∂ Ω × ( 0 , T ) for i = 1 , 2 , c i c i ( · , 0 ) = c 0 in Ω i , with transmission conditions on space–time interface c 1 = c 2 on Γ × ( 0 , T ) . ∇ c 1 · n 1 + ∇ c 2 · n 2 = 0 INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 9 / 19

  17. Linear diffusion problem ◮ Time-dependent diffusion equation + homogeneous Dirichlet BC & IC c ( · , 0 ) = c 0 . ω∂ t c + div ( − D ∇ c ) = f in Ω × ( 0 , T ) , ◮ Equivalent multi-domain formulation obtained by solving subproblems ω∂ t c i + div ( − D ∇ c i ) = f in Ω i × ( 0 , T ) = 0 on ∂ Ω i ∩ ∂ Ω × ( 0 , T ) for i = 1 , 2 , c i c i ( · , 0 ) = c 0 in Ω i , with transmission conditions on space–time interface c 1 = c 2 on Γ × ( 0 , T ) . ∇ c 1 · n 1 + ∇ c 2 · n 2 = 0 ◮ Equivalent Robin TCs on Γ × [ 0 , T ] . For β 1 , β 2 > 0: − ∇ c 1 · n 1 + β 1 c 1 = − ∇ c 2 · n 1 + β 1 c 2 − ∇ c 2 · n 2 + β 2 c 2 = − ∇ c 1 · n 2 + β 2 c 1 INRIA-SCIENTIFIQUE-UK-R β 1 , β 2 numerical parameters, can be optimized to improve convergence rate M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 9 / 19

  18. Schwarz waveform relation: Robin transmission conditions ◮ Robin to Robin operators, for i = 1 , 2 , j = 3 − i : S RtR : ( ξ i , f , c 0 ) → ( ∇ c i · n j + β j c i ) | Γ i where c i ( i = 1 , 2) solution of ω∂ t c i + div ( − D ∇ c i ) = f in Ω i × ( 0 , T ) − ∇ c i · n i + β i c i = ξ i on Γ × ( 0 , T ) Space – time interface problem with two Lagrange multipliers ξ 1 = S RtR ( ξ 2 , f , c 0 ) � � ξ 1 1 on Γ × [ 0 , T ] = κ R or S R ξ 2 ξ 2 = S RtR ( ξ 1 , f , c 0 ) 2 Solve with Richardson (original SWR) or GMRES Need to solve subdomain problem with Robin BC T. T. P . Hoang, J. Jaffré, C. Japhet, M. K., J.E. Roberts, Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal., INRIA-SCIENTIFIQUE-UK-R 51(6):3532–3559, 2013. M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 10 / 19

  19. Nonconforming discretization in time T t Information on one time grid at the interface is passed to the T other time grid at the interface ∆ t 1 using optimal L2-projections m ∆ t 2 m (Gander-Japhet-Maday-Nataf (2005)) 0 x Ω 1 Ω 2 INRIA-SCIENTIFIQUE-UK-R M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 11 / 19

  20. Nonconforming discretization in time T t Information on one time grid at the interface is passed to the T other time grid at the interface ∆ t 1 using optimal L2-projections m ∆ t 2 m (Gander-Japhet-Maday-Nataf (2005)) 0 x Ω 1 Ω 2 Application (Andra) 2950 m 140 m 10 m 3950 m Permeability d = 510 − 12 m 2 /s in the clay layer and d = 210 − 9 m 2 /s in the repository. Non-conforming time grids: ∆ t = 2000 (years) in the repository and ∆ t = 10000 (years) INRIA-SCIENTIFIQUE-UK-R in the clay layer. M. Kern (INRIA – MdS) Space–time DD for diffusion MoMas Multiphase Days (Oct. 15) 11 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend