sources and v evs for lifshitz holography
play

Sources and V evs for Lifshitz Holography Jelle Hartong Niels - PowerPoint PPT Presentation

Sources and V evs for Lifshitz Holography Jelle Hartong Niels Bohr Institute Gauge/Gravity Duality 2013 Munich Tuesday, July 30 In collaboration with Morten Christensen, Niels Obers, Blaise Rollier, to appear Outline of the Talk


  1. Sources and V evs for Lifshitz Holography Jelle Hartong Niels Bohr Institute Gauge/Gravity Duality 2013 Munich Tuesday, July 30 In collaboration with Morten Christensen, Niels Obers, Blaise Rollier, to appear

  2. Outline of the Talk • Motivation • The Model and Lifshitz Solutions • AlLif Space - Times and Beyond • Frame Fields and Boundary Geometry • W ard Identities • Counting Sources and V evs • Summary

  3. Motivation • Lifshitz holography: new type of holographic duality with non - AdS asymptotics and Lorentz violating dual [ t ] = 2 , [ ~ x ] = 1 field theories ( ) • Interesting for: i ) . black holes as they form near - horizon geometries of extremal black branes, ii ) . AdS/CMT, iii ) . extending holography beyond AdS/CFT. • Boundary stress - energy tensor for Lifshitz holography • Boundary geometry • Irrelevant deformations of AlLif space - times • Identify the sources and vevs and holographic reconstruction

  4. The Model • T S 5 runcation of type IIB on ✓ ◆ R + 12 − 1 φ ) 2 − 1 Z 2 e 2 ˆ ˆ 2( ∂ ˆ p φ ( ∂ ˆ d 5 x χ ) 2 S = − ˆ g • Scherk - Schwarz reduce to 4D using standard KK ansatz χ = ku + χ ˆ for metric and dilaton and ✓ ◆ R − 3 2( ∂ Φ ) 2 − 1 4 e 3 Φ F 2 − 1 2( ∂φ ) 2 − 1 Z d 4 x √− g 2 e 2 φ ( D χ ) 2 − V S = V = k 2 2 e − 3 Φ +2 φ − 12 e − Φ D χ = d χ − kA F = dA • [ Donos, Gauntlett, 2010 ] , [ Cassani, Faedo, 2011 ] , [ Chemissany, J.H., 2011 ] • Counterterms and reduction: [ Papadimitriou, 2011 ] , [ Chemissany, Geissbuehler, J.H., Rollier, 2012 ]

  5. Lifshitz Solutions • A z=2 Lifshitz background: ✓ dr 2 r 2 − e − 2 Φ (0) l 2 dt 2 ◆ r 4 + 1 e Φ = e Φ (0) = lkg s ds 2 = l 2 e Φ (0) r 2 ( dx 2 + dy 2 ) 2 ✓ dr 2 + l 2 k 2 g 2 ◆ r 2 + 1 s 2 = l 2 r 2 (2 dudt + dx 2 + dy 2 ) • In 5D: du 2 d ˆ s 4 Z 2 π L g uu = 2 π Llkg s • Size of the circle: p 2 π L phys = du ˆ , u ∼ u + 2 π L 2 0 l L phys • V alidity of the approximation: � 1 , g s ⌧ 1 , � 1 l s l s L phys = Lkg s • � 1 (decompactification: N = 4 SYM) , 2 l ⇠ 1 (DLCQ with nonzero theta angle) , ⌧ 1 (below KK mass scale: 3D LCS) • [ Costa, Taylor, 2010 ] , [ McGreevy, Balasubramanian, 2011 ]

  6. AlLif Solutions and Beyond • Asymptotically locally Lifshitz ( AlLif ) spaces [ Ross, 2011 ] : ds 2 = e Φ dr 2 a = r − 2 τ (0) a + . . . , where τ (0) a is HSO e t r 2 − e t e t + δ ij e i e j a = r − 1 e i e i (0) a + . . . Φ (0) = log kg s • and are asymptotically constant with . φ Φ 2 A a − e − 3 Φ / 2 e t a = A (0) a + . . . • Boundary gauge field and axion: χ = χ (0) + . . . • For HSO there exists an ADM slicing with [ t ] = 2 , [ ~ x ] = 1 τ (0) a • Irrelevant deformations: and is not HSO. φ (0) 6 = cst τ (0) a r − 4 log r Leading log deformations, i.e. in radial gauge. + k 2 ⌘ 2 e 2 Φ (0) = − 1 ⇣ • Cannot lift the constraint: 4 e 3 Φ (0) 4 e 2 φ (0) ✏ abc (0) ⌧ (0) a @ b ⌧ (0) c

  7. Boundary Geometry I e a • Define and such that: τ a (0) (0) i τ (0) a τ a τ (0) a e a (0) = − 1 (0) i = 0 e i e i (0) j = δ i (0) a τ a (0) a e a (0) = 0 j • There is no Lorentzian boundary metric! Cannot raise/ lower indices. • Local bulk Lorentz transformations act on the boundary frame fields as Galilean boosts and rotations: (0) ω i δτ (0) a = 0 δτ a (0) = ξ b (0) b e a (0) i ⇣ j ⌘ δ e i ω i (0) a = ξ b i δ e a (0) i = − ξ b j i e a (0) b τ (0) a + ω (0) b (0) ω (0) b j e (0) (0) a (0) j • Spin connection coe ffi cients determined by the vielbein postulate: j D (0) a e i (0) b = ∂ a e i (0) ab e i (0) c + ω i (0) b − Γ c i (0) a τ (0) b + ω (0) a (0) b = 0 j e

  8. Boundary Geometry II Γ c • The vielbein postulate constraints such that: (0) ab ⇣ ⌘ ⇣ ⌘ j Π (0) ab = δ ij e i δ d b + τ (0) b τ d δ e c + τ (0) c τ e r (0) a Π (0) de = 0 (0) a e (0) (0) (0) b Γ c Γ c ˆ (0) ab = Γ c • W e define by for AlLif space - times but (0) ab (0) ab we keep this also for the Lifshitz UV completion so that: (0) ab = − 1 (0) ( ∂ a τ (0) b + ∂ b τ (0) a ) + 1 Γ c 2 τ c 2 Π cd � � ∂ a Π (0) bd + ∂ b Π (0) ad − ∂ d Π (0) ab (0) − 1 2 e 3 Φ (0) / 2 Π cd Π ab (0) = δ ij e a (0) i e b � � F (0) da τ (0) b + F (0) db τ (0) a (0) (0) j F (0) ab = ∂ a A (0) b − ∂ b A (0) a • When the boundary geometry is ∂ a τ (0) b − ∂ b τ (0) a = 0 r (0) a τ (0) b = r (0) a Π bc Newton - Cartan for which we have . (0) = 0 • For applications of Newton - Cartan to CMT see e.g. [ Son, 2013 ] .

  9. W ard Identities I • On - shell variation of the action: Z ⇣ � S t (0) + S i (0) i + T t (0) δ A (0) t + T i d 3 xe (0) (0) a δτ a (0) a δ e a δ S ⇠ (0) δ A (0) i ◆ δ r + h O Φ i δ Φ (0) + h O φ i δφ (0) + h O χ i δχ (0) � A (0) r • Local symmetries: • di ff eomorphisms δτ a (0) = 2 w (0) τ a (0) , δ e a (0) i = w (0) e a • anisotropic W eyl: (0) i δ r = w (0) r δ A (0) t = 2 w (0) A (0) t , δ A (0) i = w (0) A (0) i • gauge: δ A (0) a = ∂ a Λ (0) , δχ = k Λ (0) • local tangent space δτ a (0) = − ω (0) τ a (0) , δ e a (0) i = ω (0) e a (0) i • Only at leading order: δ A (0) t = − ω (0) A (0) t , δ A (0) i = ω (0) A (0) i δ Φ (0) = − 2 ω (0)

  10. W ard Identities II • The local tangent space rotation and gauge invariant boundary stress - energy tensor: ✓ ◆ ✓ ◆ 1 1 S t (0) a + T t S i (0) a + T i T b (0) a = − τ b + e b k ∂ a χ (0) k ∂ a χ (0) (0) (0) i (0) (0) • W ard identities for assuming T b ∂ a τ (0) b − ∂ b τ (0) a = 0 (0) a ⇣ ⌘ (0) + e i r (0) b T b (0) a = � T c � τ (0) c r (0) a τ b (0) c r (0) a e b (0) b (0) i � T t (0) ∂ a B (0) t � T i (0) ∂ a B (0) i � h O Φ i ∂ a Φ (0) � h O φ i ∂ a φ (0) (0) a + e i (0) a + 2 T t (0) B (0) t + T i A (0) = − 2 τ (0) b τ a (0) T b (0) b e a (0) i T b (0) B (0) i B (0) a = A (0) a − 1 k ∂ a χ (0) • Similar to HIM boundary stress tensor [ Hollands, Ishibashi, Marolf, 2005 ] L K (0) A τ a (0) = L K (0) A Π ab (0) = L K (0) A bdry scalar = 0 ⇣ ⌘ • Conserved currents [ Ross, Saremi, 2009 ] K a (0) A T b r (0) b = 0 (0) a

  11. Counting Sources & V evs • The anomaly is given by a 3D z=2 Horava - Lifshitz action coupled to matter fields. • #sources=15 ( components )- 8 ( local symmetries )- 1 ( c0nstraint ) =6 • #vevs=15 ( components )- 9 ( W ard identities including the one for the leading order symmetry ) =6 • In the Fe ff erman - Graham expansion there appears another function which does not appear in the W ard identities. • W e thus have 6+6+1 free functions controlling the expansion.

  12. Summary • There exists a Lifshitz model that is a well - defined low energy limit of IIB string theory. • Found all irrelevant deformations of AlLif space - times. • Frame fields useful for boundary geometry ( Newton - Cartan ) and coordinate independent definition of boundary stress - energy tensor. • There are 6+6 sources & vevs and one additional free function that control the Fe ff erman - Graham expansion.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend