some theory tools for neutrino interactions with nucleons
play

some theory tools for neutrino interactions with nucleons RICHARD - PowerPoint PPT Presentation

some theory tools for neutrino interactions with nucleons RICHARD HILL UKentucky and Fermilab WWONNI Fermilab 6 November, 2017 thanks to many collaborators and colleagues, including: J.Arrington, M. Betancourt, R. Gran, P. Kammel, A.


  1. some theory tools for neutrino interactions with nucleons RICHARD HILL UKentucky and Fermilab WWONNI Fermilab 6 November, 2017 thanks to many collaborators and colleagues, including: J.Arrington, M. Betancourt, R. Gran, P. Kammel, A. Kronfeld, G.Lee, W. Marciano, K. McFarland, A. Meyer, G. Paz, J. Simone, A. Sirlin thanks Andreas and Pilar! 1

  2. Overview - topic 0: why - topic 1: amplitude analysis and z expansion - topic 2: muon capture and nucleon axial radius - topic 3: radiative corrections and SCET 2

  3. topic 0. why 3

  4. topic 0. why why bother with neutrino interactions? Isn’t this too hard/ too different/ somebody else’s problem? 4

  5. topic 0. why why bother with neutrino interactions? Isn’t this too hard/ too different/ somebody else’s problem? HEP “The good news is that it’s not my problem” 4

  6. long baseline neutrino oscillation experiment is simple in conception : 2 2 CC spectrum at 1300 km, m = 2.4e-03 eV ν ∆ µ 31 1000 1000 0.2 CC spectrum ν µ 0.18 2 sin 2 = 0.0, =n/a θ δ cp 13 2 sin 2 = 0.1, =- /2 800 800 θ δ π 0.16 cp 13 CC evts/GeV/10kt/MW.yr 2 sin 2 = 0.1, =0 θ δ Appearance Probability cp 13 0.14 LBNE, 1307.7335 2 sin 2 = 0.1, =+ /2 θ δ π cp 13 600 600 0.12 0.1 400 400 0.08 0.06 µ ν 200 200 0.04 0.02 0 0 0 10 20 30 1 10 E (GeV) ν 5

  7. long baseline neutrino oscillation experiment is simple in conception : 2 2 CC spectrum at 1300 km, m = 2.4e-03 eV ν ∆ µ 31 1000 1000 0.2 CC spectrum ν µ 0.18 2 sin 2 = 0.0, =n/a θ δ cp 13 2 sin 2 = 0.1, =- /2 800 800 θ δ π 0.16 cp 13 CC evts/GeV/10kt/MW.yr 2 sin 2 = 0.1, =0 θ δ Appearance Probability cp 13 0.14 LBNE, 1307.7335 2 sin 2 = 0.1, =+ /2 θ δ π cp 13 600 600 0.12 0.1 400 400 0.08 0.06 µ ν 200 200 0.04 Measure fraction 0.02 of ν e appearing 0 0 0 10 20 30 1 10 E (GeV) in ν μ beam ν 5

  8. long baseline neutrino oscillation experiment is simple in conception : 2 2 CC spectrum at 1300 km, m = 2.4e-03 eV ν ∆ µ 31 1000 1000 0.2 CC spectrum ν µ 0.18 2 sin 2 = 0.0, =n/a θ δ cp 13 2 sin 2 = 0.1, =- /2 800 800 θ δ π 0.16 cp 13 CC evts/GeV/10kt/MW.yr 2 sin 2 = 0.1, =0 θ δ Appearance Probability cp 13 0.14 LBNE, 1307.7335 2 sin 2 = 0.1, =+ /2 θ δ π cp 13 600 600 0.12 0.1 400 400 0.08 0.06 Do it as a function µ ν 200 200 0.04 Measure fraction of energy 0.02 of ν e appearing 0 0 0 10 20 30 1 10 E (GeV) in ν μ beam ν 5

  9. long baseline neutrino oscillation experiment is difficult in practice : simple picture is complicated by - ν e versus ν μ cross section differences need theory for σ ν e / σ νμ , at ~% precision of measurement and also - intrinsic ν e component of beam - degeneracy of uncertainty in detector response and neutrino interaction cross sections - imperfect energy reconstruction aided by near detector but - beam divergence and oscillation (near flux ≠ far flux) need theory for σ νμ , at a precision depending on the experimental capabilities 6

  10. current paradigm: constrain neutrino interactions by - determining nucleon level amplitudes - parameterizing/measuring/calculating nuclear modifications folk paradigms: “perfect theory” constrain neutrino interactions by - starting at the quark level - computing nuclear response “perfect expt.” constrain neutrino interactions by - starting directly at the nuclear level - parameterizing and measuring every cross section 7

  11. in any paradigm: near detector has access to primarily ν μ neutrinos ν e appearance signal is directly impacted by ν μ / ν e cross section differences - kinematics - 2nd class currents (G parity violation) - radiative corrections (QED and EW) - signal definition having talked the talk, do some walking: - ν μ / ν e in the time reversal process ( μ p → ν n) - nucleon input uncertainty (e-p, ν d → ν n) - radiative corrections at GeV (e-p) nuclear corrections: see talks of W. Van Order, S. Pastore, A. Ankowski, N. Jachowicz, A. Lovato. experiment: S. Bolognesi; lots of references: NUSTEC white paper 1706.03621 8

  12. Notes: beyond neutrino oscillations related applications relying on quantitative nucleon structure: - fundamental constants (probable 7 sigma shift in Rydberg) - sigma terms and WIMP-DM direct detection - g A and BBN - … QED is “easy”. But QED + nucleon structure is “hard” entering a precision realm where percent level corrections to nucleon structure need to be calculated, not just estimated 9

  13. topic 1. amplitude analysis and z expansion first, e-p elastic scattering second, ν -n CC scattering 10

  14. topic 1. amplitude analysis and z expansion first, e-p elastic scattering second, ν -n CC scattering 11

  15. 12 (up to radiative corrections) p 4 m 2 G M = F 1 + F 2 G E = F 1 + q 2 F 2 q 2 =0 � dq 2 G E ( q 2 ) 2 m p E ≡ 6 d � r 2 h J µ i = γ µ F 1 + σ µ ν q ν F 2 � i � radius as slope of form factor ρ ( r ) for the relativistic, QM, case, define 6 h r 2 i q 2 + . . . = 1 � 1 Z � 2( q · r ) 2 + . . .  e − ρ ( r ) 1 + i q · r � 1 = d 3 r Z e − d 3 r e i q · r ρ ( r ) F ( q 2 ) = pointlike ◆ ✓ d σ d Ω = d Ω | F ( q 2 ) | 2 d σ recall scattering from extended classical charge distribution:

  16. Radius extraction requires data over a Q 2 range where a simple Taylor expansion of the form factor is invalid data of Bernauer et al. (A1 collaboration), PRL 105, 242001 (2010) radius error [sensitivity studies based on bounded z expansion fit] [fm] maximum Q 2 [GeV 2 ] 13

  17. Radius extraction requires data over a Q 2 range where a simple Taylor expansion of the form factor is invalid data of Bernauer et al. (A1 collaboration), PRL 105, 242001 (2010) radius error [sensitivity studies based on bounded z expansion fit] [fm] size of r E anomaly (hydrogen) maximum Q 2 [GeV 2 ] 13

  18. Radius extraction requires data over a Q 2 range where a simple Taylor expansion of the form factor is invalid data of Bernauer et al. (A1 collaboration), PRL 105, 242001 (2010) radius error [sensitivity studies based on bounded z expansion fit] [fm] Cut used for radius extraction size of r E anomaly (hydrogen) maximum Q 2 [GeV 2 ] 13

  19. Radius extraction requires data over a Q 2 range where a simple Taylor expansion of the form factor is invalid data of Bernauer et al. (A1 collaboration), PRL 105, 242001 (2010) radius error [sensitivity studies based on bounded z expansion fit] [fm] Cut used for radius extraction size of r E anomaly (hydrogen) convergence radius for maximum Q 2 [GeV 2 ] simple Taylor expansion 13

  20. That’s ok: underlying QCD tells us that Taylor expansion of form factor in appropriate variable is convergent q 2 z particle thresholds t cut experimental kinematic region t cut − q 2 − √ t cut − t 0 p z ( q 2 , t cut , t 0 ) = , t cut − q 2 + √ t cut − t 0 p X a k [ z ( q 2 )] k F ( q 2 ) = k coefficients in rapidly convergent expansion encode nonperturbative QCD 14

  21. Reanalysis of scattering data reveals strong influence of shape assumptions 2 S − 2 P 1 2 2 S − 2 P 1 2 2 S − 2 P 3 2 2 S − 4 S 1 2 2 S − 4 D 5 2 2 S − 4 P 1 2 2 S − 4 P 3 2 2 S − 6 S 1 2 2 S − 6 D 5 2 2 S − 8 S 1 2 2 S − 8 D 3 2 2 S − 8 D 5 2 2 S − 12 D 3 2 2 S − 12 D 5 2 1 S − 3 S 1 2 Mainz data muonic H other world data electron combination proton radius[fm] Errors larger, but discrepancy remains 15

  22. Reanalysis of scattering data reveals strong influence of shape assumptions 2 S − 2 P 1 2 2 S − 2 P 1 2 2 S − 2 P 3 2 2 S − 4 S 1 2 2 S − 4 D 5 2 2 S − 4 P 1 2 2 S − 4 P 3 2 2 S − 6 S 1 2 2 S − 6 D 5 2 2 S − 8 S 1 2 2 S − 8 D 3 2 2 S − 8 D 5 2 2 S − 12 D 3 2 2 S − 12 D 5 2 1 S − 3 S 1 2 Mainz data muonic H other world data Lee, Arrington, Hill electron combination (2015) reanalysis of Mainz data reanalysis of other world data proton radius[fm] Errors larger, but discrepancy remains 15

  23. 2 S − 2 P 1 / 2 CREMA µ H 2010 → 2 S − 2 P 1 / 2 2 S − 2 P 3 / 2 2 S − 4 S 1 / 2 2 S − 4 D 5 / 2 2 S − 4 P 1 / 2 2 S − 4 P 3 / 2 2 S − 6 S 1 / 2 2 S − 6 D 5 / 2 2 S − 8 S 1 / 2 2 S − 8 D 3 / 2 2 S − 8 D 5 / 2 2 S − 12 D 3 / 2 2 S − 12 D 5 / 2 1 S − 3 S 1 / 2 e-p Mainz e-p world CODATA 2010 electron comb. CREMA µ H 2014 → e-p Mainz ( z exp.) e-p world ( z exp.) CODATA 2014 electron comb. µ D + iso. update: Beyer et al. (Science, 2017) H 2S-4P (sensitivity) low- Q 2 e-p (sensitivity) µ -p (sensitivity) 0.8 0.9 1 1.1 r p E (fm) 16

  24. topic 1. amplitude analysis and z expansion first, e-p elastic scattering second, ν -n CC scattering 17

  25. Start with the basic process ν μ μ - σ ( ν n → µp ) = | · · · F A ( q 2 ) · · · | 2 n p poorly known axial-vector form factor A common ansatz for F A has been employed for the last ~40 years: ◆ � 2 1 − q 2 ✓ F dipole ( q 2 ) = F A (0) A m 2 A Inconsistent with QCD. Typically quoted uncertainties are (too) small (e.g. compared to proton charge form factor!) � 1 dF A ⌘ 1 6 r 2 � r A = 0 . 674(9) fm � A F A (0) dq 2 � q 2 =0 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend