some mathematical challenges from life sciences
play

Some Mathematical Challenges from Life Sciences Part I Peter - PowerPoint PPT Presentation

Some Mathematical Challenges from Life Sciences Part I Peter Schuster, Universitt Wien Peter F.Stadler, Universitt Leipzig Gnter Wagner, Yale University, New Haven, CT Angela Stevens, Max-Planck-Institut fr Mathematik in den


  1. Some Mathematical Challenges from Life Sciences Part I Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University, New Haven, CT Angela Stevens, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig and Ivo L. Hofacker, Universität Wien Oberwolfach, GE, 16.-21.11.2003

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. Mathematics and the life sciences in the 21 st century 1. 2. Selection dynamics 3. RNA evolution in silico and optimization of structure and properties

  4. Mathematics and the life sciences in the 21 st century 1. 2. Selection dynamics 3. RNA evolution in silico and optimization of structure and properties

  5. At the same time people are crying for a new biology. They say, they want to make “Integrative Biology” or “Systems Biology”. Hardly anyone calls it by its proper name: Theoretical Biology. Because it has a bad reputation. I think, however, I can remit the sins of the past and declare: We need a theory, which comprises all that ( Molecular, Structural, Cellular, Developmental, ...… , and Evolutionary Biology ). Imagine, eventually, we not only need to discuss all this stuff with our expert colleagues, but we have to teach it at universities, at schools, and to the public. How could we manage without a comprehensive theory? This is the challenge we have to meet. Sydney Brenner im Gespräch: „ Eine einsame Stimme aus der Prägenomik Ära “. Laborjournal 2002, Heft 4:28 – 33.

  6. BioMedNet

  7. Genomics and proteomics Large scale data processing, sequence comparison ... Evolutionary biology Developmental biology Mathematics in Optimization through variation and Gene regulation networks, selection, relation between genotype, signal propagation, pattern 21st Century's phenotype, and function, ... formation, robustness ... Life Sciences Neurobiology Cell biology Neural networks, collective Regulation of cell cycle, properties, nonlinear metabolic networks, reaction dynamics, signalling, ... kinetics, homeostasis, ...

  8. Replication: → DNA 2 DNA + + Food : A n N o Nucleotides i R t p → Amino Acids i r Metabolism c Lipids s A n N a Carbohydrates r D T Small Molecules Waste Ribosom Protein mRNA → Translation: RNA Protein A sketch of cellular DNA metabolism

  9. Five kingdoms . L. Margulis, K.V. Schwartz, W.H.Freeman & Co., 1982

  10. Five kingdoms . L. Margulis, K.V. Schwartz, W.H.Freeman & Co., 1982

  11. Genomics and proteomics Large scale data processing, sequence comparison ... 4×10 6 Nucleotides E. coli : Length of the Genome Number of Cell Types 1 Number of Genes 4 000 3×10 9 Nucleotides Man : Length of the Genome Number of Cell Types 200 Number of Genes 30 000 - 100 000

  12. Gerhard Braunitzer, 1929 - 1989

  13. Sequence and structure of � -helices in hemoglobin

  14. Molecular evolution through comparison of sequences from different organisms

  15. Hemoglobin sequences in different vertebrates

  16. Evolution at the molecular level. R.K. Selander, A.G. Clark, T.S. Whittam, eds. Sinauer Associates, 1991.

  17. Fully sequenced genomes Fully sequenced genomes • Organisms 751 751 projects 153 153 complete (16 A, 118 B, 19 E) ( Eukarya examples: mosquito (pest, malaria), sea squirt, mouse, yeast, homo sapiens, arabidopsis, fly, worm, …) 598 598 ongoing (23 A, 332 B, 243 E) ( Eukarya examples: chimpanzee, turkey, chicken, ape, corn, potato, rice, banana, tomato, cotton, coffee, soybean, pig, rat, cat, sheep, horse, kangaroo, dog, cow, bee, salmon, fugu, frog, …) • Other structures with genetic information 68 68 phages 1328 1328 viruses 35 35 viroids 472 472 organelles (423 mitochondria, 32 plastids, 14 plasmids, 3 nucleomorphs) Source: NCBI Source: Integrated Genomics, Inc. August 12 th , 2003

  18. The same section of the microarray is shown in three independent hybridizations. Marked spots refer to: (1) protein disulfide isomerase related protein P5, (2) IL-8 precursor, (3) EST AA057170, and (4) vascular endothelial growth factor Gene expression DNA microarray representing 8613 human genes used to study transcription in the response of human fibroblasts to serum V.R.Iyer et al ., Science 283 : 83-87, 1999

  19. Wolfgang Wieser. Die Erfindung der Individualität oder die zwei Gesichter der Evolution. Spektrum Akademischer Verlag, Heidelberg 1998. A.C.Wilson. The Molecular Basis of Evolution. Scientific American, Oct.1985, 164-173.

  20. Max Perutz 1994 at the opening of the Max Perutz-Library, Vienna BioCenter

  21. Developmental biology Gene regulation networks, signal propagation, pattern formation, robustness ... Three-dimensional structure of the complex between the regulatory protein cro-repressor and the binding site on � -phage B-DNA

  22. Autocatalytic chemical reactions Multiple steady states � Oscillations in homogeneous solution Direct, A + 2 X 3 X , or hidden in the reaction mechanism Deterministic chaos (Belousow-Zhabotinskii reaction). Turing patterns Spatiotemporal patterns (spirals) Deterministic chaos in space and time x i ( t r , ) ∂ x r = ∇ + = 2 i D x F ( r , x , x , , x ; k , k , , k ) ; i 1 , 2 , , n K K K i i i 1 2 n 1 2 m ∂ t Pattern formation in reaction-diffusion systems

  23. Development of the fruit fly drosophila melanogaster : Genetics, experiment, and imago

  24. Cell biology Regulation of cell cycle, metabolic networks, reaction kinetics, homeostasis, ... The bacterial cell as an example for the simplest form of autonomous life The human body: 10 14 cells = 10 13 eukaryotic cells + 10 13 bacterial (prokaryotic) cells, � 9 � and � 200 eukaryotic cell types

  25. A B C D E F G H I J K L Biochemical Pathways 1 2 3 4 5 6 7 8 9 10 The reaction network of cellular metabolism published by Boehringer-Ingelheim.

  26. The citric acid or Krebs cycle (enlarged from previous slide).

  27. Kinetic differential equations d x = = i f ( x , x , , x ; k , k , , k ) ; i 1 , 2 , , n K K K 1 2 n 1 2 m d t Reaction diffusion equations ∂ x Solution curves: x t ( ); = 1, 2, ... , i n = ∇ 2 + = i D x f ( x , x , , x ; k , k , , k ) ; i 1 , 2 , , n K K K i ∂ i i 1 2 n 1 2 m t x i Concentration Parameter set = k ( T , p , p H , I , ; x , x , , x ) ; j 1 , 2 , , m K K K j 1 2 n General conditions: , , pH , , ... T p I t Time = Initial conditions: x i ( 0 ) ; i 1 , 2 , , n K � Boundary conditions: boundary ... s � normal unit vector ... u = = x s Dirichlet , f ( r , t ) ; i 1 , 2 , , n K i ∂ x r r Neumann , = ˆ ⋅ ∇ s = = i u x f ( r , t ) ; i 1 , 2 , , n K i ∂ u The forward-problem of chemical reaction kinetics

  28. Kinetic differential equations d x = = i f ( x , x , K , x ; k , k , K , k ) ; i 1 , 2 , K , n 1 2 n 1 2 m d t Reaction diffusion equations ∂ x = ∇ 2 + = i D x f ( x , x , , x ; k , k , , k ) ; i 1 , 2 , , n K K K ∂ i i 1 2 n 1 2 m t General conditions: , , pH , , ... T p I Initial conditions: = x i ( 0 ) ; i 1 , 2 , , n K Parameter set � = k ( T , p , p H , I , ; x , x , , x ) ; j 1 , 2 , , m Boundary conditions: boundary ... s K K K j 1 2 n � normal unit vector ... u r x s = = Dirichlet , f ( r , t ) ; i 1 , 2 , , n K i ∂ x r r Neumann , i = ˆ ⋅ ∇ s = = u x f ( r , t ) ; i 1 , 2 , , n K i ∂ u Data from measurements x t ( ); = 1, 2, ... , ; = 1, 2, ... , i n k N i k x i Concentration The inverse-problem of chemical reaction kinetics t Time

  29. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... d V 1 = − − − − − − 3 4 I g m h ( V V ) g n ( V V ) g ( V V ) Na Na K K l l d t C M dm = α − − β Hogdkin-Huxley OD equations ( 1 m ) m m m dt dh = α − − β ( 1 h ) h h h dt dn = α − − β ( 1 n ) n n n dt A single neuron signaling to a muscle fiber

  30. ∂ ∂ 2 1 V V = + − + − + − π 3 4 C g m h ( V V ) g n ( V V ) g ( V V ) 2 r L ∂ ∂ Na Na K K l l 2 R x t ∂ m = α − − β ( 1 m ) m Hodgkin-Huxley PDEquations ∂ m m t ∂ h = α − − β ( 1 h ) h Travelling pulse solution: V ( x,t ) = W ( � ) with ∂ h h t � = x � � t ∂ n = α − − β ( 1 n ) n n n ∂ t Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  31. The human brain 10 11 neurons connected by � 10 13 to 10 14 synapses

  32. Evolutionary biology Optimization through variation and selection, relation between genotype, phenotype, and function, ... 10 6 generations 10 7 generations Generation time 10 000 generations RNA molecules 10 sec 27.8 h = 1.16 d 115.7 d 3.17 a 1 min 6.94 d 1.90 a 19.01 a Bacteria 20 min 138.9 d 38.03 a 380 a 10 h 11.40 a 1 140 a 11 408 a Higher multicelluar 10 d 274 a 27 380 a 273 800 a 2 × 10 7 a 2 × 10 8 a organisms 20 a 20 000 a Time scales of evolutionary change

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend