some curiosities in optimal designs for random slopes
play

Some Curiosities in Optimal Designs for Random Slopes Thomas - PowerPoint PPT Presentation

Some Curiosities in Optimal Designs for Random Slopes Thomas Schmelter 12 , Norbert Benda 3 , Rainer Schwabe 1 1 Otto-von-Guericke-Universitt, Magdeburg 2 Bayer Schering Pharma AG, Berlin 3 Novartis Pharma AG, Basel mODa 8 T. Schmelter, N.


  1. Some Curiosities in Optimal Designs for Random Slopes Thomas Schmelter 12 , Norbert Benda 3 , Rainer Schwabe 1 1 Otto-von-Guericke-Universität, Magdeburg 2 Bayer Schering Pharma AG, Berlin 3 Novartis Pharma AG, Basel mODa 8 T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  2. Motivation Original motivation: 2.0 Population PK studies Konzentration 1.5 1.0 0.5 0.0 0 5 10 15 20 Zeit T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  3. Motivation Original motivation: 2.0 Population PK studies Konzentration 1.5 1.0 0.5 0.0 Linear Random Coefficient 0 5 10 15 20 Regression Model Zeit T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  4. Motivation Original motivation: 2.0 Population PK studies Konzentration 1.5 1.0 0.5 0.0 Linear Random Coefficient 0 5 10 15 20 Regression Model Zeit Random Slope Model T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  5. Linear Random Coefficient Regression Model j th observation of individual i given by Y ij = f ( x ij ) ⊤ b i + ε ij , i = 1 , . . . , n , j = 1 , . . . , m i T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  6. Linear Random Coefficient Regression Model j th observation of individual i given by Y ij = f ( x ij ) ⊤ b i + ε ij , i = 1 , . . . , n , j = 1 , . . . , m i ε ij ∼ iid N ( 0 , σ 2 ) T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  7. Linear Random Coefficient Regression Model j th observation of individual i given by Y ij = f ( x ij ) ⊤ b i + ε ij , i = 1 , . . . , n , j = 1 , . . . , m i � ε ij ∼ iid N ( 0 , σ 2 ) independent b i ∼ iid N ( β , σ 2 D ) T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  8. Linear Random Coefficient Regression Model j th observation of individual i given by Y ij = f ( x ij ) ⊤ b i + ε ij , i = 1 , . . . , n , j = 1 , . . . , m i � ε ij ∼ iid N ( 0 , σ 2 ) independent b i ∼ iid N ( β , σ 2 D ) Individual observation vector Y i = F i β + F i ( b i − β ) + ε i Cov ( Y i ) = σ 2 V i with V i = I m i + F i DF ⊤ i T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  9. Estimation of Population Parameters Weighted least squares: � n � − 1 n � � ˆ F ⊤ F ⊤ β = i V i F i i V i Y i i = 1 i = 1 � Covariance matrix � n � − 1 � Cov (ˆ β ) = σ 2 F ⊤ i V i F i i = 1 T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  10. Definition of Designs Elementary design � x i 1 � x ij exp. settings . . . x ik i ξ i = m ij replications m i 1 m ik i . . . T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  11. Definition of Designs Elementary design � x i 1 � x ij exp. settings . . . x ik i ξ i = m ij replications m i 1 m ik i . . . Population design � ξ 1 � ξ r elementary design . . . ξ l ζ = g 1 g l g r proportion of individuals . . . T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  12. Uniform Designs All individuals are observed uniformly using the same setting T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  13. Uniform Designs All individuals are observed uniformly using the same setting m i = m , x ij = x j , F i = F 1 , V i = V 1 � T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  14. Uniform Designs All individuals are observed uniformly using the same setting m i = m , x ij = x j , F i = F 1 , V i = V 1 � ◮ Estimation of β does not require knowledge of D (WLSE=OLSE). T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  15. Uniform Designs All individuals are observed uniformly using the same setting m i = m , x ij = x j , F i = F 1 , V i = V 1 � ◮ Estimation of β does not require knowledge of D (WLSE=OLSE). ◮ σ 2 � � − 1 Cov (ˆ F ⊤ i V − 1 β ) = F i i n σ 2 � � i F i ) − 1 + D ( F ⊤ = n T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  16. Uniform Designs All individuals are observed uniformly using the same setting m i = m , x ij = x j , F i = F 1 , V i = V 1 � ◮ Estimation of β does not require knowledge of D (WLSE=OLSE). ◮ σ 2 � � − 1 Cov (ˆ F ⊤ i V − 1 β ) = F i i n σ 2 � � i F i ) − 1 + D ( F ⊤ = n ◮ If non-integer replications are allowed for the observations, one cannot improve by going away from the uniform designs. T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  17. Linear Criteria ◮ minimize � 1 F 1 ) − 1 + D ) L ⊤ � L (( F ⊤ tr � 1 F 1 ) − 1 ) L ⊤ � � LDL ⊤ � L (( F ⊤ = tr + tr � �� � constant T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  18. Linear Criteria ◮ minimize � 1 F 1 ) − 1 + D ) L ⊤ � L (( F ⊤ tr � 1 F 1 ) − 1 ) L ⊤ � � LDL ⊤ � L (( F ⊤ = tr + tr � �� � constant T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  19. Linear Criteria ◮ minimize � 1 F 1 ) − 1 + D ) L ⊤ � L (( F ⊤ tr � 1 F 1 ) − 1 ) L ⊤ � � LDL ⊤ � L (( F ⊤ = tr + tr � �� � constant ( x 1 , . . . , x m ) optimal in reduced model ⇒ ( x 1 , . . . , x m ) optimal in RCR model Luoma (2000), Liski et al. (2002) T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  20. Random Slope Model Y ij = µ + b i x ij + ε ij , T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  21. Random Slope Model � 0 � 0 Y ij = µ + b i x ij + ε ij , D = 0 d T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  22. Random Slope Model � 0 � 0 Y ij = µ + b i x ij + ε ij , D = 0 d 1.0 ● 0.8 ◮ standard interval 0.6 0 ≤ x ij ≤ 1 0.4 ◮ σ 2 = 1 0.2 0.0 ● 0.0 0.2 0.4 0.6 0.8 1.0 x T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  23. ◮ Optimal designs are supported only on { 0 , 1 } T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  24. ◮ Optimal designs are supported only on { 0 , 1 } ◮ Candidates for optimal designs can be characterized by number of observations m 1 to be taken at x = 1 or by w = m 1 m T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  25. ◮ Optimal designs are supported only on { 0 , 1 } ◮ Candidates for optimal designs can be characterized by number of observations m 1 to be taken at x = 1 or by w = m 1 m allow wm to be non-integer T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  26. ◮ Optimal designs are supported only on { 0 , 1 } ◮ Candidates for optimal designs can be characterized by number of observations m 1 to be taken at x = 1 or by w = m 1 m allow wm to be non-integer ◮ Then � w � ˆ � � µ 1 1 − w Cov = ˆ w ( 1 − w ) − w 1 + mdw ( 1 − w ) β nm T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  27. D- vs. G-optimality The D-optimal proportion at x = 1 is √ w ∗ md + 1 ) − 1 D = ( 1 + T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  28. D- vs. G-optimality The D-optimal proportion at x = 1 is √ w ∗ md + 1 ) − 1 D = ( 1 + The G-optimal proportion at x = 1 is � 1 � 2 ( 1 − 2 ( md ) − 1 + 1 + 4 ( md ) − 2 ) , d > 0 w ∗ G = 1 d = 0 2 , T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  29. D- vs. G-optimality Optimal proportions at x = 1 1.0 0.8 0.6 IMSE-optimal proportion w 0.4 0.2 0.0 0 20 40 60 80 100 m*d T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  30. D- vs. G-optimality Optimal proportions at x = 1 1.0 0.8 0.6 IMSE-optimal proportion w D-optimal proportion 0.4 0.2 0.0 0 20 40 60 80 100 m*d T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  31. D- vs. G-optimality Optimal proportions at x = 1 1.0 0.8 0.6 IMSE-optimal proportion w D-optimal proportion 0.4 G-optimal proportion 0.2 0.0 0 20 40 60 80 100 m*d T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  32. Efficiency of w = 1 2 1.00 0.90 D-efficiency of w = 1 eff 2 0.80 0.70 0 20 40 60 80 100 m*d T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  33. Efficiency of w = 1 2 1.00 0.90 D-efficiency of w = 1 eff 2 G-efficiency of w = 1 0.80 2 0.70 0 20 40 60 80 100 m*d T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  34. Discretization Uniform designs: T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  35. Discretization Uniform designs: m = 2: T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  36. Discretization Uniform designs: m = 2: m ∗ 1 = 1 (number of obs. at x = 1) D- and G-optimal T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

  37. Discretization Uniform designs: m = 2: m ∗ 1 = 1 (number of obs. at x = 1) D- and G-optimal m = 4: T. Schmelter, N. Benda, and R. Schwabe Optimal Designs for Random Slopes

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend