some challenges of four dimensional data assimilation
play

Some challenges of four-dimensional data assimilation problems Juan - PowerPoint PPT Presentation

Some challenges of four-dimensional data assimilation problems Juan Carlos De los Reyes Centro de Modelizacin Matemtica (MODEMAT) Escuela Politcnica Nacional de Ecuador New trends in PDE constrained optimization Linz, 2019 1 / 30


  1. Some challenges of four-dimensional data assimilation problems Juan Carlos De los Reyes Centro de Modelización Matemática (MODEMAT) Escuela Politécnica Nacional de Ecuador New trends in PDE constrained optimization Linz, 2019 1 / 30

  2. Contenidos Motivation 1 Analysis of variational data assimilation 2 Optimal placement problem 3 Numerical results 4 Summary of topics 5

  3. Outline Motivation 1 Analysis of variational data assimilation 2 Optimal placement problem 3 Numerical results 4 Summary of topics 5

  4. Motivation Data assimilation in Numerical Weather Prediction Data assimilation methods aim at finding a good initial condition of the athmospheric system in order to get better weather forecasts; 3 / 30

  5. Motivation Data assimilation in Numerical Weather Prediction Data assimilation methods aim at finding a good initial condition of the athmospheric system in order to get better weather forecasts; Information can be obtained mainly from ground stations, radionsonds or satellite images; 3 / 30

  6. Motivation Data assimilation in Numerical Weather Prediction Data assimilation methods aim at finding a good initial condition of the athmospheric system in order to get better weather forecasts; Information can be obtained mainly from ground stations, radionsonds or satellite images; Reconstruction results depend strongly on the number of observations, which can be very limited in some cases. 3 / 30

  7. Equations of the athmosphere Basic model ∂ z + uv tan( φ ) ∂ u ∂ t = − u ∂ u ∂ x − v ∂ u ∂ y − w ∂ u − uw a − 1 ∂ p ∂ x − 2 Ω( w cos( φ ) − v sin( φ )) + Fr x a ρ ∂ z + u 2 tan( φ ) ∂ v ∂ t = − u ∂ v ∂ x − v ∂ v ∂ y − w ∂ v − uw a − 1 ∂ p ∂ y − 2 Ω u sin( φ ) + Fr y ρ a ∂ z + u 2 + v 2 ∂ w ∂ t = − u ∂ w ∂ x − v ∂ w ∂ y − w ∂ w − 1 ∂ p ∂ z + 2 Ω u cos( φ ) − g + Fr z a ρ ∂ T ∂ t = − u ∂ T ∂ x − v ∂ T ∂ y + ( γ − γ d ) w + 1 dH c p dt � ∂ u � ∂ρ ∂ t = − u ∂ρ ∂ x − v ∂ρ ∂ y − w ∂ρ ∂ x + ∂ v ∂ y + ∂ w ∂ z − ρ ∂ z ∂ q ∂ t = − u ∂ q ∂ x − v ∂ q ∂ y − w ∂ q ∂ z + Q v + Boundary conditions + Initial conditions 4 / 30

  8. Equations of the athmosphere Basic model ∂ z + uv tan( φ ) ∂ u ∂ t = − u ∂ u ∂ x − v ∂ u ∂ y − w ∂ u − uw a − 1 ∂ p ∂ x − 2 Ω( w cos( φ ) − v sin( φ )) + Fr x a ρ ∂ z + u 2 tan( φ ) ∂ v ∂ t = − u ∂ v ∂ x − v ∂ v ∂ y − w ∂ v − uw a − 1 ∂ p ∂ y − 2 Ω u sin( φ ) + Fr y ρ a ∂ z + u 2 + v 2 ∂ w ∂ t = − u ∂ w ∂ x − v ∂ w ∂ y − w ∂ w − 1 ∂ p ∂ z + 2 Ω u cos( φ ) − g + Fr z a ρ ∂ T ∂ t = − u ∂ T ∂ x − v ∂ T ∂ y + ( γ − γ d ) w + 1 dH c p dt � ∂ u � ∂ρ ∂ t = − u ∂ρ ∂ x − v ∂ρ ∂ y − w ∂ρ ∂ x + ∂ v ∂ y + ∂ w ∂ z − ρ ∂ z ∂ q ∂ t = − u ∂ q ∂ x − v ∂ q ∂ y − w ∂ q ∂ z + Q v + Boundary conditions + Initial conditions 4 / 30

  9. Approaches to data assimilation Approaches based on static covariance matrices Optimal interpolation 3D-Var Recent approaches based on dynamic covariance matrices 4D-Var Extended Kalman filters Ensemble methods Eugenia Kalnay Atmospheric Modeling, Data Assimilation and Predictability Cambridge Univ. Press, 2002. 5 / 30

  10. Optimal interpolation Kalman filter u b : background information vector u a : “analysis” (estimation of the state) z : observation vector z = Hu + v , where H is an observation operator and v is the observation error all variables are assumed to be Gaussian Kalman filter u a = u b + K ( z − Hu b ) , where K = BH T ( HBH T + R ) − 1 is the Kalman gain corresponding to the linear unbiased estimator of minimim variance. 6 / 30

  11. Intuition of OI 7 / 30

  12. 3D-Var MAP estimation The data assimilation problem may be treated via a Bayesian approach to find the maximum-a-posteriori (MAP) estimator. 8 / 30

  13. 3D-Var MAP estimation The data assimilation problem may be treated via a Bayesian approach to find the maximum-a-posteriori (MAP) estimator. Using the Gaussian probability density functions � � − 1 2 ( z − Hu ) T R − 1 ( z − Hu ) p ( z | u ) ∝ exp � � − 1 2 ( u b − u ) T B − 1 ( u b − u ) p ( u ) ∝ exp 8 / 30

  14. 3D-Var MAP estimation The data assimilation problem may be treated via a Bayesian approach to find the maximum-a-posteriori (MAP) estimator. Using the Gaussian probability density functions � � − 1 2 ( z − Hu ) T R − 1 ( z − Hu ) p ( z | u ) ∝ exp � � − 1 2 ( u b − u ) T B − 1 ( u b − u ) p ( u ) ∝ exp Using Bayes formula, p ( u | z ) = p ( z | u ) p ( u ) , the MAP estimator corresponds to p ( z ) the solution of the 3D-Var problem min 1 2 ( z − Hu ) T R − 1 ( z − Hu ) + 1 2 ( u b − u ) T B − 1 ( u b − u ) . 8 / 30

  15. Intuition of 4D-Var 9 / 30

  16. 4D-Var Le Dimet and Talagrand (1986) Finite dimensional problem l = 1 [ H ( y ( t i )) − z o ( t i )] T R − 1 � min J ( y , u ) [ H ( y ( t i )) − z o ( t i )] i 2 u i = 0 + 1 2 [ u − u b ] T B − 1 [ u − u b ] subject to: y ( t l ) = M ( y ( t 0 )) (Dynamical system) y ( t 0 ) = u (Initial condition) . 10 / 30

  17. 4D-Var Le Dimet and Talagrand (1986) Finite dimensional problem l = 1 [ H ( y ( t i )) − z o ( t i )] T R − 1 � min J ( y , u ) [ H ( y ( t i )) − z o ( t i )] i 2 u i = 0 + 1 2 [ u − u b ] T B − 1 [ u − u b ] subject to: y ( t l ) = M ( y ( t 0 )) (Dynamical system) y ( t 0 ) = u (Initial condition) . Features The dynamic problem incorporates all observations in a given time window; The nonlinear dynamics may be taken into account; The operational use is still a computational challenge. 10 / 30

  18. 4D-Var Le Dimet and Talagrand (1986) Finite dimensional problem l = 1 [ H ( y ( t i )) − z o ( t i )] T R − 1 � min J ( y , u ) [ H ( y ( t i )) − z o ( t i )] i 2 u i = 0 + 1 2 [ u − u b ] T B − 1 [ u − u b ] subject to: y ( t l ) = M ( y ( t 0 )) (Dynamical system) y ( t 0 ) = u (Initial condition) . What about the infinite-dimensional problem? 10 / 30

  19. Outline Motivation 1 Analysis of variational data assimilation 2 Optimal placement problem 3 Numerical results 4 Summary of topics 5

  20. Semilinear problem J ( y , u ) = 1 � [ y ( x k , t i ) − z 0 ( x k , t i )] 2 min 2 u k , i + 1 2 � u − u b � 2 B − 1 ∂ y ∂ t + Ay + g ( y ) = 0 in Q = Ω × ] 0 , T [ subject to: y = on Σ = Γ × ] 0 , T [ 0 y ( x , 0 ) = u in Ω , Difficulties Higher regularity of the initial condition is required to get some sort of continuity of the state. Pointwise misfits in the cost leads to right hand sides in M ( Q ) for the adjoint equation. Ill-posedness! 11 / 30

  21. Semilinear problem J ( y , u ) = 1 � [ y ( x k , t i ) − z 0 ( x k , t i )] 2 min 2 u k , i + 1 2 � u − u b � 2 B − 1 ∂ y ∂ t + Ay + g ( y ) = 0 in Q = Ω × ] 0 , T [ subject to: y = on Σ = Γ × ] 0 , T [ 0 y ( x , 0 ) = u in Ω , Difficulties Higher regularity of the initial condition is required to get some sort of continuity of the state. Pointwise misfits in the cost leads to right hand sides in M ( Q ) for the adjoint equation. Ill-posedness! 11 / 30

  22. Semilinear problem T J ( y , u ) = 1 � w k σ i ρ i ( t )[ y ( x k , t ) − z o ( x k , t )] 2 dt � min 2 u k , i 0 B − 1 + ϑ + 1 2 � u − u b � 2 2 �∇ ( u − u b ) � 2 L 2 (Ω) ∂ y ∂ t + Ay + g ( y ) = 0 in Q = Ω × ] 0 , T [ subject to: y = on Σ = Γ × ] 0 , T [ 0 y ( x , 0 ) = u in Ω , Difficulties Higher regularity of the initial condition is required to get some sort of continuity of the state. Pointwise misfits in the cost leads to right hand sides in M ( Q ) for the adjoint equation. Ill-posedness! w and σ are binary vectors, and ρ i ( t ) support functions 11 / 30

  23. Well-posedness Assumption on the nonlinearity g = g ( x , t , y ) : Q × R �→ R satisfies the Carathéodory conditions and is uniformly bounded at the origin, i.e., | g ( x , t , 0 ) | ≤ K , for some K > 0 , g is monotone increasing with respect to y for almost every ( x , t ) ∈ Q , g is twice continuously differentiable with respect to y and | g y ( x , t , y ) | + | g yy ( x , t , y ) | ≤ K , for some K > 0 , for almost all ( x , t ) ∈ Q and any y ∈ R . Theorem If u ∈ H 1 0 (Ω) and the nonlinear term verifies the assumption, then the semilinear equation has a unique solution y ∈ H 2 , 1 ( Q ) ֒ → L 2 ( 0 , T ; C (Ω)) . Moreover, � y � H 2 , 1 ( Q ) ≤ c ( 1 + � u � H 1 0 (Ω) ) , for some c > 0 . 12 / 30

  24. Differentiability Theorem 0 (Ω) → H 2 , 1 ( Q ) , u �→ S ( u ) = y , is Gâteaux The control-to-state mapping S : H 1 differentiable. Its derivative, in direction h ∈ H 1 0 (Ω) , is given by η ∈ H 2 , 1 ( Q ) solution of:  ∂η ∂ t + A η + g ′ ( y ) η = in Q 0  η = on Σ 0 η ( x , 0 ) = in Ω ,  h Adjoint equation − ∂ p ∂ t + A ∗ p + g ′ ( y ) p = µ in Q p = 0 on Σ p ( x , T ) = in Ω , 0 with µ ∈ L 2 ( 0 , T ; M (Ω)) has a unique solution p ∈ L 2 ( 0 , T ; W 1 , r 0 (Ω)) , with m r ∈ [ 1 , m − 1 [ . Casas-Clason-Kunisch 2013, Meyer-Susu 2017 13 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend