solving polynom ial eigenvalue problem s arising in sim
play

Solving Polynom ial Eigenvalue Problem s Arising in Sim ulations of - PowerPoint PPT Presentation

Solving Polynom ial Eigenvalue Problem s Arising in Sim ulations of Nanoscale Quantum Dots Weichung Wang Department of Mathematics National Taiwan University Recent Advances in Numerical Methods for Eigenvalue Problems, NCTS, Hsinchu,


  1. Energy states (eigenvalues) λ λ j-Ord Ite. Time j-Ord Ite. Time 1-1 0.0874 1922 2445 4-1 0.1709 1246 1598 1-2 0.1503 479 661 4-2 0.2812 613 851 5-1 0.2054 435 583 1-3 0.2460 815 1231 5-2 0.3245 566 821 1-4 0.3305 1273 2080 2-1 0.1102 631 799 6-1 0.2412 913 1213 7-1 0.2777 533 695 2-2 0.1932 524 723 8-1 0.3141 632 814 2-3 0.2972 666 1007 9-1 0.3496 1069 1362 2-4 0.3385 851 1394 3-1 0.1387 1727 2204 3-2 0.2371 525 735 3-3 0.3454 2091 3191 3-4 0.3486 759 1252 51

  2. 52 Non-uniform mesh Structure schema of a QD array

  3. Ground state energies • Ground state energies for • various spacer layer distances d 0 • number of quantum dots. 53

  4. 54 Bifurcation for two quantum dots.

  5. 55 When the bifurcation happens

  6. Uniform mesh with 2nd order convergence rate Non-uniform mesh Uniform mesh 56

  7. 57 All bounded state energy levels

  8. 58 Dynamics of the wave functions

  9. Effect of pile-up dots • More interactions are found in higher energy levels 59

  10. Effect of pile-up dots (cont.) • More interactions are found in higher energy levels 60

  11. Effect of gap distance • Smaller gap distance leads to stronger interactions vs vs 61

  12. Effect of different size QDs • Larger dot results in more interactions 62

  13. Effect of different size QDs • Larger dots result in more interactions 63

  14. 64 Anti-crossing and crossing

  15. 65 Bifurcation for two same size quantum dots.

  16. A close look of the crossing and anti-crossing Fine mesh (2560x4320=11,059,200) with Δ r = Δ z = 0.0063 nm 66

  17. Wave functions in crossing and anti-crossing areas • Crossing • Anti-Crossing 2nd E.V. 3rd E.V. 2nd E.V. 3rd E.V. Top figures: R 2 = 3.1981 nm ; Bottom figures: R 2 = 3.2044 nm ( Δ r = 0.0063 nm ) 67

  18. Pyramid quantum dot

  19. • Discretization • Eigensolver • Physics

  20. A finite volume discretization • 3D scheme: denote surface and volume average over the control element • uniform mesh due to the geometric structure • automatically builds in the interface condition 70

  21. The 3D scheme • Exterior/interior points: l ocal truncation error O(h^2) • Interface points: l ocal truncation error O(h) • Surfaces (N, W, S, E, B) • Edges (NW, WS, SE, EN, NB, WB, SB, EB) • Corners (NW, WS, SE, EN, Tip) 71

  22. 72 2nd order convergence rate

  23. • Discretization • Eigensolver • Physics

  24. Efficiency on a ordinary PC • Matrix size: 1 , 532 , 255 • Pentium 4 (1.8GHz) and 800MB of main memory 74

  25. Efficiency on a decent workstation • Matrix size: 32,401,863 (352 × 352 × 264) • Intel Itanium II (1.0GHz) and 12 GB of main memory. (5000 sec ~ 1 hr 20 min; 8600 sec ~ 2 hr 20 min) 75

  26. Sparsity patterns ( L,M,N ) = (8, 8, 6) 76

  27. Matrices properties • A ü A Á , A ª , A £ A ¢ , A ° ▲ (partial) ▲ (partial) ● yes (Diag. mtx.) Symmetry ● (yes) ▲ (partial) ● yes (Diag. mtx.) Diagonal Dominance ▲ : except the row entries involving interface grids • Asymptotic structure B is a low rank matrix. 77

  28. • Discretization • Eigensolver • Physics

  29. 79 Wave fts. assoc. w/ λ Á and λ ª

  30. Computational results in energy states Changes of energy states in terms of truncated QD heights (Dimension: 63 x 63 x N) 80

  31. 81 Computational results in wave functions

  32. Irregular shape quantum dot

  33. • Discretization • Eigensolver • Physics

  34. 84 Schema

  35. Scheme 1: Curvilinear coordinate • Matrix A L : Sym. Pos. Def.; 9 nonzeros each row • Matrix B L : diagonal matrix 85

  36. Scheme 2: The skewed coordinate • Matrix A S : Sym. Pos. Def.; 9 nonzeros each row • Matrix B S : diagonal matrix 86

  37. Scheme 3: Mixed coordinate • Symmetry preserving average • Not clear how ω affects the convergence of the eigenvalue solver analytically • Numerical investigation provides some clues 87

  38. 88 Effect of the symmetry average parameter

  39. 89 Convergence rate (cont.)

  40. 90 Summary of the proposed schemes

  41. • Discretization • Eigensolver • Physics

  42. Jacobi-Davidson method for polynomial eigenvalue prob. • A Jacobi-Davidson method with locking (and restarging) 92

  43. Solving the correction equation • Sleijpen and van der Vorst (SIMA96) 93

  44. Computing the smallest positive eigenvalue − = + σ + σ 1 ( ) ( ) M D L D D U • SSOR: 94

  45. 95 Computing the successive eigenvalues

  46. Performance of SSOR preconditioner • Dimension: 1,935,090 • HP workstation with 1.3GHz Intel Itanium II CPU with 24 GB memory • Average timing for computing all target eigenpairs 96

  47. • Discretization • Eigensolver • Physics

  48. 98 Eigenvalue spectrum

  49. Eigenvectors (wave functions) • Ground state ( λ 1 =0.3869 eV), 1st excited ( λ 2 =0.6670 eV) , and 2nd excited ( λ 3 =0.7410 eV) state energy • The first three eigenvectors associated with the first three smallest positive eigenvalues. 99

  50. Conclusion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend