detecting topological orders from matrix product state
play

Detecting topological orders from Matrix-Product State based - PowerPoint PPT Presentation

Detecting topological orders from Matrix-Product State based simulations Frank Pollmann Max Planck Institute for the Physics of Complex Systems International Workshop on Tensor Networks and Quantum Many-Body Problems 2016 Detecting


  1. Detecting topological orders from 
 Matrix-Product State based simulations Frank Pollmann Max Planck Institute for the Physics of Complex Systems International Workshop on Tensor Networks and Quantum Many-Body Problems 2016

  2. Detecting topological orders from 
 Matrix-Product State based simulations Overview (1) Matrix-product states and efficient simulations - Review: Entanglement and matrix-product states (MPS) - MPS for infinite systems - Time evolving block decimation (TEBD) (2) Extracting fingerprints of topological order - Symmetry protected topological phases - Characterizing intrinsic topological orders - Symmetry enriched topological phases - (Dynamics of topological excitations)

  3. Matrix-product states ���� ���� ���� ���� ���� ψ j 1 ,j 2 ,j 3 ,j 4 ,j 5 ≈

  4. Entanglement • A generic quantum state has a dimensional Hilbert space d L X | ψ i = ψ j 1 ,j 2 ,...,j L | j 1 i | j 2 i . . . | j L i , j n = 1 . . . d j 1 ,j 2 ,...,j L • Decompose a state into a superposition 
 ... ... of product states ( Schmidt decomposition ) 
 A B X X | ψ i = C i,j | i i A ⌦ | j i B = Λ α | α i A ⌦ | α i B i,j α • Entanglement entropy as a measure for the 
 amount of entanglement 
 S = − P α Λ 2 α log Λ 2 α • Equivalent to with ρ A = Tr B | ψ ih ψ | S = − Tr ρ A log ρ A

  5. Entanglement (a) (b) (a) (b) Area law for ground states of local (gapped) Hamiltonians 
 L R L R in one dimensional systems N S ( L ) = const . N [Srednicki ’93, Hastings ’07] (c) (d) (c) (d) (a) (b) Many body Hilbert space Many body Hilbert space X | ψ i = Λ α | α i A ⌦ | α i B L R α Area law states Area law states N L (c) (d) All ground states live in a tiny corner of the Hilbert space! Many body Hilbert space Area law states

  6. Compression of quantum states N A N B X X X • Example: | ψ � C ij | i � A | j � B = λ γ | φ γ � A | φ γ � B = i =1 j =1 γ • Matrix can represent an image (array of pixel)     0 . 23 0 . 56 0 . 23 0 . 56 · · · · · · . . . . ... ... . . . . C =  =     . . . .    0 . 22 0 . 34 0 . 22 0 . 34 · · · · · · χ = 1200 • Reconstruction of the matrix (image) from a small 
 number of Schmidt states (SVD): ≈

  7. Compression of quantum states χ = 1200 χ = 256 χ = 16 χ = 64 χ = 4 Important features visible already for states! < 16

  8. Compression of quantum states [Mondrian]

  9. Compression of quantum states • Coefficients in the many-body wave function: 
 Rank - L tensor : diagrammatic representation ���� ���� ���������� ψ j 1 ,j 2 ,j 3 ,j 4 ,j 5 = ���� ���� ���� ���� ���� ���� ���� ���� ���������� • Successive Schmidt decompositions: matrix-product states d d A [1] j 1 Λ [1] X X | ψ i = β | j 1 i | β i [2 ,...N ] (a) (b) β L R j 1 =1 β =1 N ���� ���� ���������� (c) (d) Many body Hilbert space Area law states ���� ���� ���� ���� ���� ���� ���� ���� ����������

  10. Matrix-Product States • Matrix-product states: Reduction of variables: ���� ���� ���������� ���� ���� ���������� [M. Fannes et al. 92, Schuch et al ‘08] d L → Ld χ 2 ���� ���� ���� ���� ���� ���� ���� ���� ���������� ���� ���� ���� ���� ���� ���� ���� ���� ���������� A j αβ = ψ j 1 ,j 2 ,j 3 ,j 4 ,j 5 ≈ • Matrix-product operators [Verstraete et al ’04] [1] [2] [3] [4] [5] ���� M M M M M (a) ���� O j 0 1 ,j 0 2 ,j 0 3 ,j 0 4 ,j 0 5 j 1 ,j 2 ,j 3 ,j 4 ,j 5 = � � � � � � � � � � (b) ���� ���� M M M M M ���� ���� � � � � � � � � � � (c) ���� ���� M M M M M ���� ���� ���� ���� * * * * * � � � � � � � � � �

  11. Infinite matrix-product states ∞

  12. Infinite MPS and the canonical form • Infinite and translationally invariant systems: Ld χ 2 → d χ 2 [1] [2] [3] [6] [7] [4] [5] A A A A A A A | ψ i : . . . . . . • MPS is not unique ˜ A i n XA i n X − 1 = = ➡ describes the same state! ˜ A i n

  13. Infinite MPS and the canonical form • Choose a convenient representation in Canonical Form : 
 Bond index corresponds to Schmidt decomposition! [Vidal ‘03] χ X h α | α 0 i = δ αα 0 | ψ i = Λ α | α i L ⌦ | α i R with α =1 A i n • Write tensor as product of αβ (a) : Diagonal matrix with Schmidt values (b) (a) : Tensor relating to Schmidt basis (b) L (a) (b) (c) (d) L ' ' (c) (d) ' � � � ' ' L L ' � � � (c) L (d) L R ' (e) ' L R ' (e) � � � � � L � � L R (e) � �

  14. (a) (b) (a) (b) Infinite MPS and the canonical form L (c) (d) ' • Schmidt states in terms of the MPS: ' L ' � � � (c) (d) L ' ' ' � � � L R • Orthogonality: (e) L R � � L R (e) ' ' ' * * * � �

  15. (a) (a) (b) (b) L L (c) (c) (d) (d) ' ' ' ' ' ' � � � � � � Infinite MPS and the canonical form L L • Conditions for the canonical form: L R L R (e) (e) � � � � • Left and right transfer matrix have dominant eigenvalue one and the corresponding eigenvector is the identity X Λ α Λ α 0 Γ j Γ j � ∗ T L � αα 0 ; ββ 0 = αβ α 0 β 0 j

  16. Infinite MPS and the canonical form • Example: Affleck-Kennedy-Lieb-Tasaki (AKLT) • Ground state the spin-1 Hamiltonian S j +1 + 1 X S j ~ ~ 3( ~ S j ~ S j +1 ) 2 , H = j

  17. Infinite MPS and the canonical form • Example: Affleck-Kennedy-Lieb-Tasaki (AKLT) and χ = 2 d = 3 r r r 4 2 4 3 σ + , Γ 0 = − 3 σ z , Γ 1 = − Γ − 1 = 3 σ − ✓ 1 r ◆ 1 0 = Λ 0 1 2

  18. Infinite MPS and the canonical form • Efficient evaluation of expectation values : Γ Λ 2 Λ 2 h ψ | O n | ψ i = Γ ∗ T R Λ Λ Λ Λ Γ Γ Γ Γ Γ Λ 2 Λ 2 h ψ | O m O n | ψ i = Γ ∗ Λ Γ ∗ Λ Γ ∗ Λ Γ ∗ Λ Γ ∗

  19. (a) (b) L (c) (d) ' ' ' � � � Infinite MPS and the canonical form L • Correlation length of an MPS: L R (e) 1 � � ⇠ = − log | ✏ 2 | , is the second largest eigenvalue of the transfer matrix ✏ 2 • Degeneracy of largest 
 eigenvalue (unity) shows 
 that the MPS is a cat-state 


  20. Efficient numerical simulations i ~ ∂ ∂ t | ψ i = H | ψ i

  21. Efficient numerical simulations • Transverse field Ising model 
 X ( J σ z j σ z j +1 + g σ x H = − j ) Ground state properties • j m = h σ z i Quantum Disordered g/J Ordered Dynamics • σ z ( t ) σ + ... 0 | ψ i ...

  22. Time evolving block decimation • Assume we have a Hamiltonian of the form X h [ j,j +1] H = j Disclaimer: Simple! 
 • Time evolution in real time 
 Not perfect for all uses! | ψ t i = exp( � iHt ) | ψ t =0 i • Time evolution in imaginary time 
 exp( � H τ ) | ψ i i | ψ 0 i = lim || exp( � H τ ) | ψ i i || τ →∞

  23. Time evolving block decimation X h [ j,j +1] • Consider a Hamiltonian H = [Vidal ‘03] j • Decompose the Hamiltonian as H=F+G X F [ j ] ≡ X h [ j,j +1] F ≡ even j even j X X G [ j ] ≡ h [ j,j +1] G ≡ odd j odd j F F F G G [ F [ r ] , F [ r 0 ] ] = 0 ([ G [ r ] , G [ r 0 ] ] = 0) • We observe 
 but [ G, F ] 6 = 0

  24. 
 Time evolving block decimation • Apply Suzuki-Trotter decomposition of order p 
 
 exp ( − i ( F + G ) δ t ) ≈ f p [exp( − F δ t ) , exp( − G δ t )] f 2 ( x, y ) = x 1 / 2 yx 1 / 2 with , , etc. f 1 ( x, y ) = xy • Two chains of two-site gates Y exp( − iF [ r ] δ t ) = U F even r Y exp( − iG [ r ] δ t ) = U G odd r

  25. Time evolving block decimation • Time Evolving Block Decimation algorithm (TEBD) 1 1 2 3 3 4 5 5 6 0 2 4 7 1 1 2 3 3 4 5 5 6 2 4 7 0 • How do we get the original form back?

  26. Time evolving block decimation • Time Evolving Block Decimation algorithm (TEBD) truncation • Scales with the matrix dimension as χ 3

  27. Time evolving block decimation (i) Γ A Λ A Γ B Λ • Density matrix renormalization group (DMRG) B B Λ Θ ~ (ii) Θ ~ Θ M M E 0 = L R (iii) ~ ~ truncation Θ A X Y Λ SVD ~ ~ ~ (iv) ~ Γ A Λ A Γ B Λ B B B Λ B A Λ X Y Λ Λ -1 -1 ( ) B ( ) B Λ Λ B ~ (v) Γ A Λ • Scales with the matrix dimension as χ 3 ~ L B ~ A * Λ (Γ ) ~ Γ B Λ B ~ R ~ B * Λ B (Γ )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend