simultaneous geometric and colorimetric camera calibration
play

SIMULTANEOUS GEOMETRIC AND COLORIMETRIC CAMERA CALIBRATION Ilmenau, - PowerPoint PPT Presentation

SIMULTANEOUS GEOMETRIC AND COLORIMETRIC CAMERA CALIBRATION Ilmenau, 7th October 2010 Daniel Kapusi, Philipp Prinke, Rainer Jahn, Darko Vehar, Rico Nestler, Karl-Heinz Franke Zentrum fr Bild- und Signalverarbeitung e. V. www.zbs-ilmenau.de


  1. SIMULTANEOUS GEOMETRIC AND COLORIMETRIC CAMERA CALIBRATION Ilmenau, 7th October 2010 Daniel Kapusi, Philipp Prinke, Rainer Jahn, Darko Vehar, Rico Nestler, Karl-Heinz Franke Zentrum für Bild- und Signalverarbeitung e. V. www.zbs-ilmenau.de

  2. Outline SIMULTANEOUS GEOMETRIC AND COLORIMETRIC CAMERA CALIBRATION  Motivation  Calibration Target  Target Feature Detection  Geometric Calibration  Stereo Rectification  Color Calibration  Conclusion 07. 10. 2010 16. Farbworkshop 2

  3. Application Scenario: Robot Work Area 3D scene modeling D D Motivation D Motivation D D stereo vision  Redundant scene observation camera from multiple points of view Calibration Target  Stereo vision for more robust Target Feature object recognition D Detection D Requirements monocular vision camera Geometric  Unified coordinate system for Calibration human all sensors Stereo Rectification robot  Unified colorimetric perception D D D D D between all sensors Color Calibration Vision based safety system: Avoiding collisions between robots and humans! Geometric and Conclusion Colorimetric Camera Calibration 07. 10. 2010 16. Farbworkshop 3

  4. Chessboard Calibration Target With Colorimetric Features Motivation Calibration Target Calibration Target Target Feature Detection Geometric Calibration Colorimetric features Geometric features  24 circles filled with well distributed Stereo Rectification  Different parity in number of reference colors (natural and edges in horizontal and vertical primary colors as well as grey- direction [1] Color Calibration balanced fields) in the style of the Orientation is clearly detectable Macbeth [2] color checker Conclusion [1] Jean-Yves Bouguet. (2010, July) Camera Calibration Toolbox for Matlab. [2] C. S. McCamy, H. Marcus, and J. G. Davidson, "A Color- Rendition Chart,“ [Online]. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html Journal of Applied Photographic Engineering, vol. 2, no. 3, pp. 95-99, Summer 1976. 07. 10. 2010 16. Farbworkshop 4

  5. Values Of The ColorChecker Motivation Calibration Target Calibration Target Target Feature Detection Geometric Calibration Stereo Rectification Color Calibration Conclusion [3] Danny Pascale, "RBG coordinates of the Macbeth ColorChecker," The BabelColor Company, Montreal, Quebec, Canada, Comparison 2006. 07. 10. 2010 16. Farbworkshop 5

  6. Detecting Edges On The Chessboard Using OpenCV 1. Step: rough edge detection [4]  Adaptive threshold binarization Motivation  Separate black squares by dilatation of white squares  Find and simplify contours to 4 edge-points at each black square Calibration Target 2. Step: sub pixel accurate edge detection [4] Target Feature Target Feature Detection Detection  Using the fact, that the dot product of two orthogonal vectors is zero Geometric  Consider all points within a neighborhood around the real corner position Q Calibration  Iterative solution of a linear system of equations Stereo Rectification p i – position vector to point P i q – position vector to point Q Color Calibration Conclusion     T I P p q ( ) ( ) 0 [4] Gary Bradski and Adrian Kaehler, Learning OpenCV. Sebastopol, USA/CA: O´Reilly i i Media, 2008 07. 10. 2010 16. Farbworkshop 6

  7. Detecting Edges On The Chessboard Using OpenCV Motivation Calibration Target Multipose-Calibration Target Feature Target Feature Detection Detection Geometric Calibration Stereo Rectification Color Calibration Conclusion 07. 10. 2010 16. Farbworkshop 7

  8. Detecting Color Features Calculating the start color value from each square  Middle position of the chessboard square Motivation  Median value from direct neighborhood Recursive region growing Calibration Target  Using a uniform criterion as a tolerance threshold Target Feature Target Feature Detection Detection Geometric Calibration Stereo Rectification Color Calibration Conclusion Average the color values from the segmented region 07. 10. 2010 16. Farbworkshop 8

  9. Camera Parameters Coordinate transformation World Motivation   P  R t Calibration Target Camera Image Camera   f 0 H   x x Target Feature  World   M 0 f H y y Detection    0 0 1  Image Geometric Geometric   P Calibration Calibration    p M R t Stereo Rectification Extrinsic camera parameters Intrinsic camera parameters Color Calibration R – Rotation matrix Hx, Hy – Principal point coordinates t – Translation vector F – Focal length Conclusion [5] Roger Y. Tsai, "An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision," IEEE Journal of Robotics and Automation , vol. 3, no. 4, pp. 323-344, August 1987. [6] Zhengyou Zhang, "A Flexible New Technique for Camera Calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 22, no. 11, pp. 1330-1334, November 2000. 07. 10. 2010 16. Farbworkshop 9

  10. Brown-Conrady-Distortion-Model radial distortion + tangential distortion radial Motivation           2 2 4 6 2 x x 1 k r k r k r 2 p x y p ( r 2 x ) v u 1 2 3 1 u u 2 u Calibration Target           2 2 4 6 2 y y 1 k r k r k r p ( r 2 y ) 2 p x y v u 1 2 3 1 u 2 u u Target Feature Detection   2 2 2 r x y tangential u u Geometric Geometric Calibration Calibration radial tangential distortion distortion Distortion parameters Stereo Rectification k1, k2, k3 - radial distortion coefficients p1, p2 - tangential distortion coefficients Color Calibration optical centre Conclusion [7] Alexander Eugen Conrady, "Decentering lens systems," Monthly notices of the Royal Astronomical Society , vol. 79, pp. 384-390, April 1919. [8] Duane C. Brown, "Decentering Distortion of Lenses," Photometric Engineering , vol. 32, no. 3, pp. 444-462, 1966. 07. 10. 2010 16. Farbworkshop 10

  11. Overall Calibration Procedure BV-System BV-System MonoVision MonoVision BV-System BV-System StereoVision StereoVision BV-System BV-System StereoVision StereoVision Motivation R+T R+T R+T D D D D D D D D Calibration Target D D R+T R+T R+T R+T Target Feature Detection MonoVision MonoVision BV-System BV-System MonoVision MonoVision BV-System BV-System D D Geometric Geometric D D Calibration Calibration R+T Stereo Rectification R+T R+T R+T D D D D D D D StereoVision D n o m Color Calibration BV-System i D s D e i StereoVision V t StereoVision s o y e S BV-System BV-System r - e V t S B MonoVision MonoVision Conclusion BV-System BV-System R+T R+T R+T R+T 11 07. 10. 2010 16. Farbworkshop

  12. Stereo Rectification[4] Extraction of depth information  Assuming a standard stereo geometry Motivation  Determination of the horizontal mismatch (disparity) Calibration Target from a stereoscopic view (Correspondence analysis)  Calculating the distance by simple triangulation Target Feature Detection Geometric Calibration Stereo Rectification Stereo Rectification Color Calibration Conclusion [4] Gary Bradski and Adrian Kaehler, Learning OpenCV. Sebastopol, USA/CA: O´Reilly Media, 2008 07. 10. 2010 16. Farbworkshop 12

  13. Stereo Rectification[4] left right Motivation Calibration Target Target Feature Detection unrectified image Geometric Calibration Stereo Rectification Stereo Rectification Color Calibration rectified images Conclusion [4] Gary Bradski and Adrian Kaehler, Learning OpenCV. Sebastopol, USA/CA: O´Reilly Media, 2008 07. 10. 2010 16. Farbworkshop 13

  14. Color Calibration Target based global color calibration[9]  Corresponding nominal and actual color values Motivation  Calculation of the transformation rule which causes the smallest middle aberration Linear transformation models Non-linear transformation model Calibration Target  Scaling (+Offset)  Polynomial regression  Linear Transformation Target Feature Detection  Linear Regression Geometric Calibration RGB nominal color C valence Stereo Rectification nom Calculation of actual color Transformation RGB Color Calibration valence Color Calibration Rule C act Conclusion [9] ZBS e. V. (2007, April) zbs CCal-Bibliothek Benutzerdokumentation. [Online]. http://www.zbs-ilmenau.de/intern/ccalc/ZBSColCalib.pdf 07. 10. 2010 16. Farbworkshop 14

  15. Conclusion D D D D D stereo vision camera Requirements to 3D scene modeling Motivation  Unified coordinate system for all sensors D D monocular vision camera  Unified colorimetric perception between all sensors Calibration Target human robot D Geometric and Colorimetric Camera Calibration D D D D Target Feature Detection  Using a chessboard target with integrated color markers Geometric  Sub pixel accurate edge detection of the chessboard squares Calibration  Calculating intrinsic camera parameters, distortion coefficients and geometric relations to adjacent sensors from multiple target Stereo Rectification poses Color Calibration  Calculate rectification parameters for stereo vision systems  Target based color calibration Conclusion Conclusion Available as an ANSI C conform software library 07. 10. 2010 16. Farbworkshop 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend