sieve weights and their smoothings
play

Sieve weights and their smoothings Dimitris Koukoulopoulos 1 Joint - PowerPoint PPT Presentation

Sieve weights and their smoothings Dimitris Koukoulopoulos 1 Joint work with Andrew Granville 1,2 and James Maynard 3 1 Universit de Montral 2 University College London 3 University of Oxford Oberwolfach, 10 November 2016 Selbergs sieve 2


  1. Sieve weights and their smoothings Dimitris Koukoulopoulos 1 Joint work with Andrew Granville 1,2 and James Maynard 3 1 Université de Montréal 2 University College London 3 University of Oxford Oberwolfach, 10 November 2016

  2. Selberg’s sieve 2   �  � µ ( d ) ≤ λ d ,  d | ( a , m ) d | ( a , m ) for any λ d ∈ R with λ 1 = 1.

  3. Selberg’s sieve 2   �  � µ ( d ) ≤ λ d ,  d | ( a , m ) d | ( a , m ) for any λ d ∈ R with λ 1 = 1. Minimize quadratic form 2   �  � � λ d = λ d 1 λ d 2 · # { a ∈ A : D | a } .  a ∈A d | ( a , m ) d 1 , d 2 | m D =[ d 1 , d 2 ]

  4. Selberg’s sieve 2   �  � µ ( d ) ≤ λ d ,  d | ( a , m ) d | ( a , m ) for any λ d ∈ R with λ 1 = 1. Minimize quadratic form 2   �  � � λ d = λ d 1 λ d 2 · # { a ∈ A : D | a } .  a ∈A d | ( a , m ) d 1 , d 2 | m D =[ d 1 , d 2 ] Assume λ d supported on d ≤ R , so D ≤ R 2 .

  5. Selberg’s sieve 2   �  � µ ( d ) ≤ λ d ,  d | ( a , m ) d | ( a , m ) for any λ d ∈ R with λ 1 = 1. Minimize quadratic form 2   �  � � λ d = λ d 1 λ d 2 · # { a ∈ A : D | a } .  a ∈A d | ( a , m ) d 1 , d 2 | m D =[ d 1 , d 2 ] Assume λ d supported on d ≤ R , so D ≤ R 2 . Optimizing (making assumptions on A ) yields � κ � log ( R / d ) λ d ≈ c · µ ( d ) · · 1 d ≤ R , κ = sieve dimension log R

  6. Selberg’s sieve weights & beyond � κ � log ( R / d ) λ d ≈ c · µ ( d ) · · 1 d ≤ R , κ = sieve dimension log R Weights λ d decay smoothly to 0, with ‘smoothness degree’ increasing with κ .

  7. Selberg’s sieve weights & beyond � κ � log ( R / d ) λ d ≈ c · µ ( d ) · · 1 d ≤ R , κ = sieve dimension log R Weights λ d decay smoothly to 0, with ‘smoothness degree’ increasing with κ . More generally, consider � log d � � M f ( n ; R ) = µ ( d ) f , log R d | n supp ( f ) ⊂ ( −∞ , 1 ] , f ( 0 ) = 1.

  8. Selberg’s sieve weights & beyond � κ � log ( R / d ) λ d ≈ c · µ ( d ) · · 1 d ≤ R , κ = sieve dimension log R Weights λ d decay smoothly to 0, with ‘smoothness degree’ increasing with κ . More generally, consider � log d � � M f ( n ; R ) = µ ( d ) f , log R d | n supp ( f ) ⊂ ( −∞ , 1 ] , f ( 0 ) = 1. M f ( n ; R ) should behave like a sieve weight for f sufficiently smooth, i.e. x M f ( n ; R ) 2 ≍ � � log R ≍ 1 . n ≤ x n ≤ x p | n ⇒ p > R

  9. Selberg’s sieve weights & beyond � κ � log ( R / d ) λ d ≈ c · µ ( d ) · · 1 d ≤ R , κ = sieve dimension log R Weights λ d decay smoothly to 0, with ‘smoothness degree’ increasing with κ . More generally, consider � log d � � M f ( n ; R ) = µ ( d ) f , log R d | n supp ( f ) ⊂ ( −∞ , 1 ] , f ( 0 ) = 1. M f ( n ; R ) should behave like a sieve weight for f sufficiently smooth, i.e. x M f ( n ; R ) 2 ≍ � � log R ≍ 1 . n ≤ x n ≤ x p | n ⇒ p > R Maynard and Tao used k -dimensional generalization of M f ( n ; R ) to detect small gaps between primes.

  10. To smooth or not to smooth? � log d � � M f ( n ; R ) = µ ( d ) f , supp ( f ) ⊂ ( −∞ , 1 ] . log R d | n Is this a sieve weight when f is not smooth?

  11. To smooth or not to smooth? � log d � � M f ( n ; R ) = µ ( d ) f , supp ( f ) ⊂ ( −∞ , 1 ] . log R d | n Is this a sieve weight when f is not smooth? If n = 2 m , 2 ∤ m , then � � � µ ( d ) = µ ( d ) + µ ( 2 d ) d | n , d ≤ R d | m , d ≤ R d | m , 2 d ≤ R

  12. To smooth or not to smooth? � log d � � M f ( n ; R ) = µ ( d ) f , supp ( f ) ⊂ ( −∞ , 1 ] . log R d | n Is this a sieve weight when f is not smooth? If n = 2 m , 2 ∤ m , then � � � µ ( d ) = µ ( d ) + µ ( 2 d ) d | n , d ≤ R d | m , d ≤ R d | m , 2 d ≤ R � = µ ( d ) . d | m , R / 2 < d ≤ R

  13. To smooth or not to smooth? � log d � � M f ( n ; R ) = µ ( d ) f , supp ( f ) ⊂ ( −∞ , 1 ] . log R d | n Is this a sieve weight when f is not smooth? If n = 2 m , 2 ∤ m , then � � � µ ( d ) = µ ( d ) + µ ( 2 d ) d | n , d ≤ R d | m , d ≤ R d | m , 2 d ≤ R � = µ ( d ) . d | m , R / 2 < d ≤ R # { n ≤ x : ∃ ! d ∈ ( R / 2 , R ] , d | n } ≍ x ( log R ) − δ ( log log R ) − 3 / 2 , Ford: where δ ≈ 0 . 086 < 1, i.e. � d | m , d ≤ R µ ( d ) � = 0 too often.

  14. How much to smooth? For f ∈ C 1 ( R ) , n = p v m with p ∤ m , � log d � � log ( pd ) � � � M f ( n ; R ) = µ ( d ) f + µ ( pd ) f log R log R d | m d | m

  15. How much to smooth? For f ∈ C 1 ( R ) , n = p v m with p ∤ m , � log d � � log ( pd ) � � � M f ( n ; R ) = µ ( d ) f + µ ( pd ) f log R log R d | m d | m log p � � u + log d � log R � µ ( d ) f ′ = − d u . log R 0 d | m

  16. How much to smooth? For f ∈ C 1 ( R ) , n = p v m with p ∤ m , � log d � � log ( pd ) � � � M f ( n ; R ) = µ ( d ) f + µ ( pd ) f log R log R d | m d | m log p � � u + log d � log R � µ ( d ) f ′ = − d u . log R 0 d | m For f ∈ C A ( R ) , n = p v 1 1 · · · p v A A m with p 1 , . . . , p A ∤ m , � A log p 1 log pA � � � u a + log d log R log R � � M f ( n ; R ) = ( − 1 ) A µ ( d ) f ( A ) · · · d u log R 0 0 d | m a = 1

  17. How much to smooth? For f ∈ C 1 ( R ) , n = p v m with p ∤ m , � log d � � log ( pd ) � � � M f ( n ; R ) = µ ( d ) f + µ ( pd ) f log R log R d | m d | m log p � � u + log d � log R � µ ( d ) f ′ = − d u . log R 0 d | m For f ∈ C A ( R ) , n = p v 1 1 · · · p v A A m with p 1 , . . . , p A ∤ m , � A log p 1 log pA � � � u a + log d log R log R � � M f ( n ; R ) = ( − 1 ) A µ ( d ) f ( A ) · · · d u log R 0 0 d | m a = 1 A log p a � ⇒ M f ( n ; R ) � M f ( A ) ( m ; R ) log R . a = 1

  18. How much to smooth? For f ∈ C A ( R ) , n = p v 1 1 · · · p v A A m with p 1 , . . . , p A ∤ m , A log p a � M f ( n ; R ) � M f ( A ) ( m ; R ) log R . a = 1

  19. How much to smooth? For f ∈ C A ( R ) , n = p v 1 1 · · · p v A A m with p 1 , . . . , p A ∤ m , A log p a � M f ( n ; R ) � M f ( A ) ( m ; R ) log R . a = 1 � d | n , d ≤ R µ ( d )) 2 k � � n ≤ x ( � x M f ( n ; R ) 2 k � max � Guess : log R , ( log R ) 2 kA n ≤ x

  20. How much to smooth? For f ∈ C A ( R ) , n = p v 1 1 · · · p v A A m with p 1 , . . . , p A ∤ m , A log p a � M f ( n ; R ) � M f ( A ) ( m ; R ) log R . a = 1 � d | n , d ≤ R µ ( d )) 2 k � � n ≤ x ( � x M f ( n ; R ) 2 k � max � Guess : log R , ( log R ) 2 kA n ≤ x d | n , d ≤ R µ ( d )) 2 k ∼ c k x ( log R ) E k , then we would need If � n ≤ x ( � A > E k / 2 k for M f ( n ; R ) 2 k to act as a sieve weight.

  21. Theorem (Granville, K., Maynard (201?)) Let k , A ∈ N . Assume that: d | n , d ≤ R µ ( d )) 2 k ∼ c k x ( log R ) E k when x / R 2 k → ∞ ; • � n ≤ x ( � • f ∈ C A ( R ) , supp ( f ) ⊂ ( −∞ , 1 ] , f , f ′ , . . . , f ( A ) unif. bounded.

  22. Theorem (Granville, K., Maynard (201?)) Let k , A ∈ N . Assume that: d | n , d ≤ R µ ( d )) 2 k ∼ c k x ( log R ) E k when x / R 2 k → ∞ ; • � n ≤ x ( � • f ∈ C A ( R ) , supp ( f ) ⊂ ( −∞ , 1 ] , f , f ′ , . . . , f ( A ) unif. bounded. (a) If A > E k / 2 k + 1 , then η 3 / 2 x M f ( n ; R ) 2 k ≪ f , k , A � • ( x ≥ R ≥ 2 ) log R n ≤ x ∃ p | n , p ≤ R η

  23. Theorem (Granville, K., Maynard (201?)) Let k , A ∈ N . Assume that: d | n , d ≤ R µ ( d )) 2 k ∼ c k x ( log R ) E k when x / R 2 k → ∞ ; • � n ≤ x ( � • f ∈ C A ( R ) , supp ( f ) ⊂ ( −∞ , 1 ] , f , f ′ , . . . , f ( A ) unif. bounded. (a) If A > E k / 2 k + 1 , then η 3 / 2 x M f ( n ; R ) 2 k ≪ f , k , A � • ( x ≥ R ≥ 2 ) log R n ≤ x ∃ p | n , p ≤ R η M f ( n ; R ) 2 k = c k , f x � x � � ( x ≥ R 2 k + ǫ ) • log R + O f , k , A ( log R ) 3 / 2 n ≤ x

  24. Theorem (Granville, K., Maynard (201?)) Let k , A ∈ N . Assume that: d | n , d ≤ R µ ( d )) 2 k ∼ c k x ( log R ) E k when x / R 2 k → ∞ ; • � n ≤ x ( � • f ∈ C A ( R ) , supp ( f ) ⊂ ( −∞ , 1 ] , f , f ′ , . . . , f ( A ) unif. bounded. (a) If A > E k / 2 k + 1 , then η 3 / 2 x M f ( n ; R ) 2 k ≪ f , k , A � • ( x ≥ R ≥ 2 ) log R n ≤ x ∃ p | n , p ≤ R η M f ( n ; R ) 2 k = c k , f x � x � � ( x ≥ R 2 k + ǫ ) • log R + O f , k , A ( log R ) 3 / 2 n ≤ x (b) If A ≤ E k / 2 k + 1 and x ≥ R ≥ 2 , then n ≤ x M f ( n ; R ) 2 k ≪ x ( log R ) E k − 2 k ( A − 1 ) . � Dominant contribution when # { p | n : p ≤ R } ∼ ( E k + 2 k ) log log R.

  25. The exponent E k � 2 k � ( x / R 2 k → ∞ ) . � � ∼ c k x ( log R ) E k µ ( d ) n ≤ x d | n , d ≤ R

  26. The exponent E k � 2 k � ( x / R 2 k → ∞ ) . � � ∼ c k x ( log R ) E k µ ( d ) n ≤ x d | n , d ≤ R Dress, Iwaniec, Tenenbaum (1983): E 1 = 0

  27. The exponent E k � 2 k � ( x / R 2 k → ∞ ) . � � ∼ c k x ( log R ) E k µ ( d ) n ≤ x d | n , d ≤ R Dress, Iwaniec, Tenenbaum (1983): E 1 = 0 Motohashi (2004): E 2 = 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend