shell models old and new
play

SHELL MODELS: OLD AND NEW Philippe G. Ciarlet City University of - PowerPoint PPT Presentation

SHELL MODELS: OLD AND NEW Philippe G. Ciarlet City University of Hong Kong In Honor of Claude Brezinski and Sebastiano Seatzu p. 1 Outline 1. The two fundamental forms of a surface 2. Nonlinear shell theory The classical and intrinsic


  1. SHELL MODELS: OLD AND NEW Philippe G. Ciarlet City University of Hong Kong In Honor of Claude Brezinski and Sebastiano Seatzu – p. 1

  2. Outline 1. The two fundamental forms of a surface 2. Nonlinear shell theory – The classical and intrinsic approaches 3. A nonlinear Korn inequality on a surface 4. Classical linear shell theory – Korn’s inequality on a surface 5. Intrinsic linear shell theory: Compatibility conditions of Saint–Venant type In Honor of Claude Brezinski and Sebastiano Seatzu – p. 2

  3. 1. THE TWO FUNDAMENTAL FORMS OF A SURFACE α, β, . . . ∈ { 1 , 2 } i, j, . . . ∈ { 1 , 2 , 3 } Summation convention ω : open in R 2 θ : ω ⊂ R 2 → θ ( ω ) ⊂ R 3 θ is “smooth enough” surface θ ( ω ) : curvilinear coordinates y 1 , y 2 : In Honor of Claude Brezinski and Sebastiano Seatzu – p. 3

  4. Assume θ is an immersion: ∂ α θ linearly independent in ω a 1 ∧ a 2 def def covariant basis: = ∂ α θ , = a α a 3 | a 1 ∧ a 2 | def First fundamental form: = a α · a β = ∂ α θ · ∂ β θ a αβ = ∂ α a β · a 3 = ∂ αβ θ · ∂ 1 θ ∧ ∂ 2 θ def Second fundamental form: b αβ | ∂ 1 θ ∧ ∂ 2 θ | First fundamental form: metric notions , such as lengths, areas, angles ∴ a.k.a. metric tensor ( a αβ ) : symmetric positive-definite matrix field Second fundamental form: curvature notions ( b αβ ) : symmetric matrix field In Honor of Claude Brezinski and Sebastiano Seatzu – p. 4

  5. Z q area θ ( ω 0 ) = det( a αβ ( y ))d y ω 0 In Honor of Claude Brezinski and Sebastiano Seatzu – p. 5

  6. s Z a αβ ( f ( t )) d f α d t ( t ) d f β length of θ ( γ ) = d t ( t )d t I Curvature of θ ( γ ) at θ ( y ) , y = f ( t ) , when θ ( γ ) lies in a plane normal to the surface θ ( ω ) at θ ( y ) : b αβ ( f ( t )) d f α d t ( t ) d f β d t ( t ) 1 R = a αβ ( f ( t )) d f α d t ( t ) d f β d t ( t ) In Honor of Claude Brezinski and Sebastiano Seatzu – p. 6

  7. Portion of a cylinder 0 1 R cos ϕ B C B C θ : ( ϕ, z ) → R sin ϕ @ A z In Honor of Claude Brezinski and Sebastiano Seatzu – p. 7

  8. Portion of a torus 0 1 ( R + r cos χ ) cos ϕ B C B C θ : ( ϕ, χ ) → ( R + r cos χ ) sin ϕ @ A r sin χ In Honor of Claude Brezinski and Sebastiano Seatzu – p. 8

  9. Cartesian coordinates 0 1 x B C B C θ : ( x, y ) → y @ A p R 2 − ( x 2 + y 2 ) In Honor of Claude Brezinski and Sebastiano Seatzu – p. 9

  10. Spherical coordinates 0 1 R cos ψ cos ϕ B C B C θ : ( ϕ, ψ ) → R cos ψ sin ϕ @ A R sin ψ In Honor of Claude Brezinski and Sebastiano Seatzu – p. 10

  11. Stereographic coordinates 0 1 2 R 2 u B C 1 B C 2 R 2 v θ : ( u, v ) → ( u 2 + v 2 + R 2 ) @ A R ( u 2 + v 2 − R 2 ) In Honor of Claude Brezinski and Sebastiano Seatzu – p. 11

  12. The components a αβ : ω → R and b αβ : ω → R of the two fundamental forms cannot be arbitrary functions : Let ( a στ ) def def def = a στ Γ αβτ = ( a αβ ) − 1 , Γ σ Γ αβτ = ∂ α a β · a τ and αβ αβ are the Christoffel symbols The functions Γ αβτ and Γ σ Then it is easy to see that: ∂ σ Γ αβτ − Γ µ ∂ ασ a β · a τ = αβ Γ στµ − b αβ b στ , ∂ σ b αβ + Γ µ ∂ ασ a β · a 3 = αβ b σµ . Besides,  ∂ ασ a β · a τ = ∂ αβ a σ · a τ ∂ ασβ θ = ∂ αβσ θ ⇐ ⇒ ∂ ασ a β = ∂ αβ a σ ⇐ ⇒ ∂ ασ a β · a 3 = ∂ αβ a σ · a 3 In Honor of Claude Brezinski and Sebastiano Seatzu – p. 12

  13. Necessary conditions : ∂ β Γ αστ − ∂ σ Γ αβτ + Γ µ αβ Γ στµ − Γ µ ασ Γ βτµ = b ασ b βτ − b αβ b στ in ω Gauß equations ∂ β b ασ − ∂ σ b αβ + Γ µ ασ b βµ − Γ µ αβ b σµ = 0 in ω Codazzi-Mainardi equations Remarkably, these conditions are also sufficient if ω is simply-connected (see next theorem). Observe that the Christoffel symbols Γ αβτ and Γ σ αβ can be expressed solely in terms of the components of the first fundamental form: Γ αβτ = 1 Γ σ αβ = a στ Γ αβτ with ( a στ ) = ( a αβ ) − 1 2( ∂ β a ατ + ∂ α a βτ − ∂ τ a αβ ) and Consequently, the Gauß and Codazzi-Mainardi equations are (nonlinear) relations between the first and second fundamental forms . In Honor of Claude Brezinski and Sebastiano Seatzu – p. 13

  14. def S 2 = { symmetric 2 × 2 matrices } def S 2 = { symmetric positive-definite 2 × 2 matrices } > def O 3 = { proper orthogonal 3 × 3 matrices } + FUNDAMENTAL THEOREM OF SURFACE THEORY: ω ⊂ R 2 : open, connected, simply connected. Let there be given ( a αβ ) ∈ C 2 ( ω ; S 2 > ) and ( b αβ ) ∈ C 1 ( ω ; S 2 ) satisfying the Gauß and Codazzi-Mainardi equations in ω . Then there exists θ ∈ C 3 ( ω ; R 3 ) such that: b αβ = ∂ αβ θ · ∂ 1 θ ∧ ∂ 2 θ a αβ = ∂ α θ · ∂ β θ and in ω | ∂ 1 θ ∧ ∂ 2 θ | Uniqueness holds modulo isometries of R 3 : All other solutions are: with a ∈ R 3 , Q ∈ O 3 y ∈ ω → χ ( y ) = a + Qθ ( y ) + ⇐ ⇒ ( χ , θ ) ∈ R S. Mardare (2003): ( a αβ ) ∈ W 1 ,p ( ω ; S 2 > ) and ( b αβ ) ∈ L p ( ω ; S 2 ) , p > 2 . Then θ ∈ W 2 ,p ( ω ; R 3 ) In Honor of Claude Brezinski and Sebastiano Seatzu – p. 14

  15. 2. NONLINEAR SHELL THEORY: THE CLASSICAL AND INTRINSIC APPROACHES EXAMPLES OF SHELLS: Blades of a rotor In Honor of Claude Brezinski and Sebastiano Seatzu – p. 15

  16. Inner tube In Honor of Claude Brezinski and Sebastiano Seatzu – p. 16

  17. Cooling tower In Honor of Claude Brezinski and Sebastiano Seatzu – p. 17

  18. Hangar for Zeppelins (upside down) In Honor of Claude Brezinski and Sebastiano Seatzu – p. 18

  19. HOW IS A SHELL PROBLEM POSED? In Honor of Claude Brezinski and Sebastiano Seatzu – p. 19

  20. CLASSICAL APPROACH Unknown : ϕ = ( ϕ i ) : ω → R 3 : deformation of middle surface S Boundary conditions : ϕ = θ on γ 0 (simple support), or ϕ = θ and ∂ ν ϕ = ∂ ν θ on γ 0 (clamping) ( length γ 0 > 0 ) Applied forces : ( f i ) : ω → R 3 Lamé constants of the elastic material: λ > 0 , µ > 0 4 λµ A αβστ = λ + 2 µ a αβ a στ + 2 µ ( a ασ a βτ + a ατ a βσ ) , where ( a στ ) = ( a αβ ) − 1 P There exists c 0 > 0 such that A αβστ ( y ) t στ t αβ ≥ c 0 α,β | t αβ | 2 for all y ∈ ω, ( t αβ ) ∈ S 2 Thickness of the shell: 2 ε > 0 Area element along S : √ a d y where a = det( a αβ ) P .G. Ciarlet: An Introduction to Differential Geometry with Applications to Elasticity , Springer, 2005 In Honor of Claude Brezinski and Sebastiano Seatzu – p. 20

  21. Problem : To find ϕ : ω → R 3 such that: ϕ : ω → R 3 smooth enough ; e J ( ϕ ) = inf { J ( e ϕ ); e ϕ = θ on γ 0 } Total energy of the shell – W.T. Koiter (1966): Z a αβ − a αβ ) √ a d y ε A αβστ ( e J ( e ϕ ) = a στ − a στ )( e ◭ membrane energy 2 ω Z ε 3 b αβ − b αβ ) √ a d y ◭ flexural energy A αβστ ( e b στ − b στ )( e + 6 ω Z √ a d y, f i e ◭ forces − ϕ i ω def ◭ change of metric a αβ − a αβ = ∂ α e ϕ · ∂ β e ϕ − a αβ e tensor ϕ ∧ ∂ 2 e ϕ · ∂ 1 e ϕ def e b αβ − b αβ = ∂ αβ e ϕ | − b αβ ◭ change of curvature | ∂ 1 e ϕ ∧ ∂ 2 e tensor In Honor of Claude Brezinski and Sebastiano Seatzu – p. 21

  22. INTRINSIC APPROACH : Another look at the energy of the shell: Z a αβ − a αβ ) √ a d y ε A αβστ ( e ◭ membrane energy J ( e ϕ ) = a στ − a στ )( e 2 ω Z ε 3 b αβ − b αβ ) √ a d y A αβστ ( e b στ − b στ )( e + ◭ flexural energy 6 ω Z √ a d y f i e ◭ forces − ϕ i ω a αβ and e Hence the fundamental forms e b αβ of the unknown surface e ϕ ( ω ) appear as natural unknowns This is the basis of the intrinsic approach : J.L. Synge & W.Z. Chien (1941); W.Z. Chien (1944) S.S. Antman (1976) W. Pietraszkiewicz (2001); S. Opoka & W. Pietraszkiewicz (2004) In Honor of Claude Brezinski and Sebastiano Seatzu – p. 22

  23. a αβ and e But, if e b αβ are chosen as the primary unknowns: b αβ ) the integral R ϕ √ a d y taking into a αβ ) and ( e – How to express in terms of ( e ω f · e account the forces in the energy? a αβ ) and ( e b αβ ) the boundary condition , e.g., e – How to express in terms of ( e ϕ = θ on Γ 0 , that the admissible deformations must satisfy? – How to handle such expressions if minimizing sequences are considered: ϕ k → e a k e b k e e αβ − k →∞ e → a αβ and αβ − → b αβ = ⇒ e ϕ ? k →∞ a αβ and e – Constrained minimization problem : The new unknowns e b αβ must satisfy the ( highly nonlinear ) Gauß and Codazzi-Mainardi equations In Honor of Claude Brezinski and Sebastiano Seatzu – p. 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend