shape optimization under convexity constraint
play

Shape optimization under convexity constraint Jimmy LAMBOLEY - PowerPoint PPT Presentation

Shape optimization under convexity constraint Jimmy LAMBOLEY Universit Paris-Dauphine ANR GAOS Work with D. Bucur, I. Fragal, E. Harrell, A. Henrot, M. Pierre, A. Novruzi 03/04/2012, PICOF J. Lamboley (Universit Paris-Dauphine) Optimal


  1. Shape optimization under convexity constraint Jimmy LAMBOLEY Université Paris-Dauphine ANR GAOS Work with D. Bucur, I. Fragalà, E. Harrell, A. Henrot, M. Pierre, A. Novruzi 03/04/2012, PICOF J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 1 / 20

  2. Examples Isoperimetric problems : min P (Ω) . Ω ⊂ R d , | Ω | = V 0 Spectral problems : min λ 1 (Ω) . Ω ⊂ R d , | Ω | = V 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 2 / 20

  3. Newton’s problem, of the body of minimal resitance Let D = D ( 0 , 1 ) in R 2 . �� 1 � 1 + |∇ f | 2 , f : D → [ 0 , M ] , f concave min D Numerical computations : T. Lachand-Robert, E. Oudet, 2004 : M = 3 / 2 M = 1 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 3 / 20

  4. Mahler conjecture Conjecture : Is the cube Q d := [ − 1 , 1 ] d solution of � � M ( K ) := | K || K ◦ | , K convex of R d , − K = K min ? K ◦ := � � ξ ∈ R d , � ξ, x � ≤ 1 , ∀ x ∈ K . J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 4 / 20

  5. Pólya-Szegö conjecture The electrostatic capacity of a bounded set Ω ⊂ R 3 is defined by R 3 \ Ω  ∆ u Ω = 0 in  �  u Ω = 1 on ∂ Ω |∇ u Ω | 2 Cap (Ω) := where | x |→ + ∞ u Ω lim = 0 R 3 \ Ω   Is the disk D ⊂ R 3 solution of : min Cap ( K ) ? K convex of R 3 , P ( K )= P 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 5 / 20

  6. Pólya-Szegö conjecture The electrostatic capacity of a bounded set Ω ⊂ R 3 is defined by R 3 \ Ω  ∆ u Ω = 0 in  �  u Ω = 1 on ∂ Ω |∇ u Ω | 2 Cap (Ω) := where | x |→ + ∞ u Ω lim = 0 R 3 \ Ω   Is the disk D ⊂ R 3 solution of : min Cap ( K ) ? K convex of R 3 , P ( K )= P 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 5 / 20

  7. Examples Reverse Isoperimetric problems : max P (Ω) . Ω ⊂ D , | Ω | = V 0 Reverse Spectral problems : λ 1 (Ω) . max Ω ⊂ D , | Ω | = V 0 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 6 / 20

  8. We want to analyze problem such as K convex of R d J ( K ) , min where J is a shape functional which satisfies a concavity property. Existence is usually easy, Geometric informations on the minimizers ? Find the minimizer. Difficulty : If K is convex, the neighbors of K are mostly not convex. How can we write and use optimality conditions ? J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 7 / 20

  9. We want to analyze problem such as K convex of R d J ( K ) , min where J is a shape functional which satisfies a concavity property. Existence is usually easy, Geometric informations on the minimizers ? Find the minimizer. Difficulty : If K is convex, the neighbors of K are mostly not convex. How can we write and use optimality conditions ? J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 7 / 20

  10. 2-dimensional case Outline 2-dimensional case 1 A calculus of variations formulation Polygons as optimal shapes Higher dimensional case 2 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 8 / 20

  11. 2-dimensional case A calculus of variations formulation Outline 2-dimensional case 1 A calculus of variations formulation Polygons as optimal shapes Higher dimensional case 2 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 9 / 20

  12. 2-dimensional case A calculus of variations formulation Linear Parametrization of the convexity To a periodic function u : T → R ∗ + , we associate � � K u = ( r , θ ) ; 0 ≤ r < 1 / u ( θ ) . 1 u ( θ ) θ K u • O Parametrization of a starshaped set. Then K u convex ⇔ u ′′ + u ≥ 0 . J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 10 / 20

  13. 2-dimensional case A calculus of variations formulation Linear Parametrization of the convexity To a periodic function u : T → R ∗ + , we associate � � K u = ( r , θ ) ; 0 ≤ r < 1 / u ( θ ) . 1 u ( θ ) θ K u • O Parametrization of a starshaped set. Then K u convex ⇔ u ′′ + u ≥ 0 . J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 10 / 20

  14. 2-dimensional case A calculus of variations formulation Linear Parametrization of the convexity Therefore we get a one-to-one correspondance ∼ { v > 0 ∈ H 1 ( T ) such that v ′′ + v ≥ 0 } { 2 d convex sets } − → K u �− → u J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 11 / 20

  15. 2-dimensional case A calculus of variations formulation New setting of the problem � � min J ( K ) min j ( u ) := J ( K u ) K ∈F ad u ∈ Sad K convex u ′′ + u ≥ 0 where S ad is a functional space taking into account the other constraints. Examples : S ad = { u : T → R / u 2 ≤ u ≤ u 1 } K 1 K K 2 × � � 1 � S ad = u : T → R / | K u | = 2 u 2 ( θ ) d θ = V 0 T J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 12 / 20

  16. 2-dimensional case A calculus of variations formulation New setting of the problem � � min J ( K ) min j ( u ) := J ( K u ) K ∈F ad u ∈ Sad K convex u ′′ + u ≥ 0 where S ad is a functional space taking into account the other constraints. Examples : S ad = { u : T → R / u 2 ≤ u ≤ u 1 } K 1 K K 2 × � � 1 � S ad = u : T → R / | K u | = 2 u 2 ( θ ) d θ = V 0 T J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 12 / 20

  17. 2-dimensional case Polygons as optimal shapes Outline 2-dimensional case 1 A calculus of variations formulation Polygons as optimal shapes Higher dimensional case 2 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 13 / 20

  18. 2-dimensional case Polygons as optimal shapes Case of geometric functionals � G ( θ, u ( θ ) , u ′ ( θ )) d θ u ′′ + u ≥ 0 j ( u ) := min T Theorem (L., Novruzi, 2008) If G is strictly concave in the third variable, then solutions are polygons. Application to Reverse isoperimetry : � � min µ | K | − P ( K ) , K convex , D 1 ⊂ K ⊂ D 2 Application to Mahler in R 2 (with E. Harrell, A. Henrot) : [ − 1 , 1 ] 2 . J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 14 / 20

  19. 2-dimensional case Polygons as optimal shapes Case of geometric functionals � G ( θ, u ( θ ) , u ′ ( θ )) d θ u ′′ + u ≥ 0 j ( u ) := min T Theorem (L., Novruzi, 2008) If G is strictly concave in the third variable, then solutions are polygons. Application to Reverse isoperimetry : � � min µ | K | − P ( K ) , K convex , D 1 ⊂ K ⊂ D 2 Application to Mahler in R 2 (with E. Harrell, A. Henrot) : [ − 1 , 1 ] 2 . J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 14 / 20

  20. 2-dimensional case Polygons as optimal shapes Case of non geometric functionnals u ′′ + u ≥ 0 j ( u ) := J ( K u ) min Theorem (L., Novruzi, Pierre, 2011) We assume j smooth and j ′′ ( u )( v , v ) ≤ α � v � 2 H 1 − a ( T ) − β | v | 2 H 1 ( T ) , for some β > 0 and 0 < a ≤ 1 . Then solutions are polygons. Application to � � λ 1 ( K ) − P ( K ) , K convex ⊂ D , | K | = V 0 min J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 15 / 20

  21. 2-dimensional case Polygons as optimal shapes Reverse Faber-Krahn � � max λ 1 ( K ) , K convex ⊂ D , | K | = V 0 We look at j ( u ) := − λ 1 ( K u ) + µ | K u | Lemma (L., Novruzi, Pierre, 2011) If K u is convex and v supported where ∂ K u is smooth, then − d 2 du 2 λ 1 ( K u ) · ( v , v ) ≤ C � v � 2 L 2 ( T ) − β | v | 2 2 ( T ) . 1 H Conclusion : any solution is nowhere “smooth and strictly convex”. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 16 / 20

  22. 2-dimensional case Polygons as optimal shapes Reverse Faber-Krahn � � max λ 1 ( K ) , K convex ⊂ D , | K | = V 0 We look at j ( u ) := − λ 1 ( K u ) + µ | K u | Lemma (L., Novruzi, Pierre, 2011) If K u is convex and v supported where ∂ K u is smooth, then − d 2 du 2 λ 1 ( K u ) · ( v , v ) ≤ C � v � 2 L 2 ( T ) − β | v | 2 2 ( T ) . 1 H Conclusion : any solution is nowhere “smooth and strictly convex”. J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 16 / 20

  23. Higher dimensional case Outline 2-dimensional case 1 A calculus of variations formulation Polygons as optimal shapes Higher dimensional case 2 J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 17 / 20

  24. Higher dimensional case About Pólya-Szegö conjecture � � J ( K ) := f ( | K | , λ 1 ( K ) , Cap ( K )) , K convex ⊂ R d , P ( K ) = P 0 min Theorem (Bucur, Fragalà, L. 2010) Assume J is positive, (1-)homogeneous and smooth, and K 0 is a solution. Then, if ∂ K 0 contains a relatively open set ω of class C 2 , then the Gauss curvature vanishes on ω . Pólya-Szegö conjecture : J ( K ) = Cap ( K ) . J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 18 / 20

  25. Higher dimensional case About Mahler conjecture � � J ( K ) := | K || K ◦ | , K convex ⊂ R d , K = − K min , Theorem (Harrell, Henrot, L. 2011) Let K 0 be a minimizer. If ∂ K 0 contains a relatively open set ω of class C 2 , then the Gauss curvature vanishes on ω . Improvement using Monge-Ampere equation and Transport Theory (work in Progress with Carlier and Gangbo). J. Lamboley (Université Paris-Dauphine) Optimal convex shapes 19 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend