shall we mixed logit
play

Shall We Mixed Logit? Estimation stability and prediction - PowerPoint PPT Presentation

Shall We Mixed Logit? Estimation stability and prediction reliability of error component mixed logit models Shusaku NAKAI Ryuichi KITAMURA Kyoto University Toshiyuki YAMAMOTO Nagoya University 1 Outline Introduction Error


  1. Shall We Mixed Logit? Estimation stability and prediction reliability of error component mixed logit models Shusaku NAKAI Ryuichi KITAMURA Kyoto University Toshiyuki YAMAMOTO Nagoya University 1

  2. Outline • Introduction • Error component MXL models – Identification issue – Variability of parameter estimates – Estimation of choice probabilities • Usefulness of MNL models • Conclusions and future research 2

  3. Introduction MXL models • considered the most promising discrete choice model • widespread applications in recent years However • properties of parameter estimates are not well understood Objective • Estimation stability and prediction reliability of error component MXL models are examined with simulated data 3

  4. Error component MXL models • Examined is a trinomial MXL model 2 explanatory variables Standard iid Gumbel = β + β + µ + ε  u X X 1 1 11 2 21 1 1 n n n n n  = β + β + µ + ε  u X X 2 1 12 2 22 2 2 n n n n n  = β + β + µ + ε  u X X 3 1 13 2 23 2 3 n n n n n   π 2 2 error components   + 2 0 0 s 1   6 µ π   2 2 ~ ( 0 , ) N s Σ = + 2 2 s s 1 1   n 2 2 6   µ π 2 2 ~ ( 0 , ) N s   + 2 s 2 2   n 4 2  6 

  5. Error component MXL models Simulated discrete choice data Generated by a probit model = β + β + ξ    u X X 1 0 0 1 1 11 2 21 1 n n n n     ∑ = ρ = β + β + ξ    0 1 u X X ξ 2 1 12 2 22 2 n n n n    ρ  0 1   = β + β + ξ  u X X 3 1 13 2 23 3 n n n n β =  1 . 0 1  β = ρ = 0.00, 0.10, 0.30, 0.50, 0.70, 0.90, 0.95, 0.99  0 . 5 2 Each data set contains 1,000 cases 25 data sets are generated for each value of ρ ~ N ( 0 , 1 ) X jin 5

  6. Error component MXL models Identification issue For trinomial probit models, Dansie (1985) suggests σ σ       0 0 1 0 0 ' ' 0 0 11 11       = σ = σ = Σ Σ Σ 0 1 0 1 ' 0 1 0       23 23 A B C     σ   σ  0 1   0 ' 1   0 0 1  23 23 • 3 matrices are equivalent, and produce the same , thus Σ A is not estimable likelihood value • Model estimation would not be able to indicate which is most likely 6

  7. Error component MXL models Identification issue (cont.) For GEV models, Börsch-Supan (1990) and Munizaga et al. (2000) estimated in the case of 4 alternatives Nested logit model HEV model σ σ       0 0 1 0 0 ' ' 0 0 11 11       = σ = σ = Σ Σ Σ 0 1 0 1 ' 0 1 0       23 23 A B C     σ   σ  0 1   0 ' 1   0 0 1  23 23 • and found that nested logit models have some capacity to accommodate heteroscedasticity 7

  8. Error component MXL models Identification issue (cont.) • In this study, data sets are simulated by Σ B σ   σ     0 0 1 0 0 ' ' 0 0 11 11       = σ = σ = Σ Σ Σ 0 1 0 1 ' 0 1 0       23 A 23 B C     σ σ    0 1  0 ' 1    0 0 1  23 23   π 2   + 2 0 0 s • Error component MXL 1   6 π   model examined in 2 Σ = + 2 2 s s   2 2 this study is consistent 6   π with Σ A 2   + 2 s   2  6  8

  9. Error component MXL models Identification issue (cont.) 1000 1000 2 ˆ 2 s ˆ s 2 1 100 100 Parameter Estimate Parameter Estimate 10 10 1 1 0.1 0.1 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 ρ ρ • Standard deviation becomes extremely large, implying covariance structure is unidentified • MXL model is subject to the same identification problem of probit model (consistent with Walker et al. (2007)) 9

  10. Error component MXL models Identification issue (cont.) = = 2 2 2 • Hereafter, we constrain s s s 1 2 σ   σ     0 0 1 0 0 ' ' 0 0 11 11       = σ = σ = Σ Σ Σ 0 1 0 1 ' 0 1 0       23 A 23 B C     σ σ    0 1  0 ' 1    0 0 1  23 23   1 0 0   π 2     π   2 + 2 0 0 s   + ρ 2   1 1   s   6   π 6     2 Σ = + 2 2 1   s s   2 2 6   π 2 2   + s 2 s  ρ =  2  6  π 2 + 2 s 10 6

  11. Error component MXL models Variability of parameter estimates 10 ˆ 9 β 8 1 Parameter estimate 推定パラメータ値 7 6 5 4 3 2 β 1 = 1 . 0 1 0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 誤差相関係数ρ Error correlation coefficient ρ • Parameter estimates are quite instable especially for the case with higher ρ 11

  12. Error component MXL models Variability of parameter estimates (cont.) • This instability is caused by the dependence of coefficient estimates on error variance Probit model Error component MXL model     1 0 0 1 0 0 2 s       π ρ = 2 ∑ = ρ   Σ = + ρ 2   π   2 0 1 1 s   ξ + 2 s  6      ρ  0 1  6  1  • Error variance is not standardized in MXL model • Needs for normalization ~ 1 β = β ˆ of parameter estimates j j π 2 2 + ˆ s 6 12

  13. Error component MXL models Variability of parameter estimates (cont.) 1.4 ~ β 1.2 1 β 1 = 1 . 0 Paraemter Estimate 1 0.8 0.6 0.4 0.2 0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 ρ • After normalization, utility coefficients are unbiased and stable 13

  14. Error component MXL models Variability of parameter estimates (cont.) 1000 2 ˆ s 100 Parameter Estimate 10 True value 1 0.1 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 ρ • Estimated variances of the error components tend to be biased upward 14

  15. Error component MXL models Variability of parameter estimates (cont.) • Biases in estimated variances might be related to the difference in shape of Normal and Gumbel distribution • Amemiya (1981) suggests in binary case N(0, 1.6 2 ) rather than N(0, π 2 /3) fits better to L(0, π 2 /3), though the latter has equal variance to L(0, π 2 /3) (1.6 < π /3 0.5 ≈ 1.8) Cumulative distribution function 0.695 1.2 0.69 1 0.685 0.8 0.68 0.6 0.675 0.4 0.67 0.2 0.665 0 -2.7 -2.4 -2.1 -1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0 3 -3 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 0.66 15 0.75 0.75 0.76 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.79 0.79 0.79 0.79 0.8 0.8

  16. Error component MXL models Estimation of choice probabilities • Choice probabilities are calculated by ( ) η = ˆ ˆ  β + β + η or 1 ˆ if i j exp X X s ∫∫∑ ˆ = η η η η = ( ) 1 1 1 2 2  ( ) in in i ( ) ( ) , P i df df η = 1 2 n β ˆ + β ˆ + η i j  or 2 or 3 exp ˆ if i j X X s 2 1 1 jn 2 2 jn j j = = = = = = for the case 1 . 0 X X X X X X 11 21 12 22 13 23 • The effects of biased estimate of s is examined by introducing q, and calculate ( ) β + β + η π 2 exp 6 q X X s ∫∫∑ ( ) = η η 1 1 2 2 i i i ( | ) ( ) ( ) P i q df df 1 2 β + β + η π 2 exp 6 q X X s 1 1 2 2 j j j j • True probability is obtained when q ≈ 1.29 16

  17. Error component MXL models Estimation of choice probabilities (cont.) 0.6 0.6 ρ = 0.1 0.5 0.5 P(1) P(1) 0.4 0.4 Choice Probability Choice Probability P(2) P(2) 0.3 0.3 True value P(3) P(3) 0.2 0.2 0.1 0.1 1.15 1.15 1.73 1.73 0 0 0.1 0.1 1 1 10 10 Range of estimated probability q q • True probabilities are contained in the 17 range of the estimated probability

  18. Error component MXL models Estimation of choice probabilities (cont.) 0.6 0.6 ρ = 0.5 0.5 0.5 P(1) P(1) 0.4 0.4 Choice Probability Choice Probability 0.3 0.3 P(2) P(2) True value P(3) P(3) 0.2 0.2 0.1 0.1 1.57 1.57 2.29 2.29 0 0 0.1 0.1 1 1 10 10 Range of estimated probability q q • True probabilities are NOT contained in 18 the range of the estimated probability

  19. Error component MXL models Estimation of choice probabilities (cont.) 0.6 0.6 ρ = 0.9 0.5 0.5 P(1) P(1) 0.4 0.4 Choice Probability Choice Probability 0.3 0.3 P(2) P(2) True value P(3) P(3) 0.2 0.2 0.1 0.1 3.45 3.45 5.33 5.33 0 0 0.1 0.1 1 1 10 10 Range of estimated probability q q • True probabilities are NOT contained in 19 the range of the estimated probability

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend