set theoretical aspects of proof theory via turing
play

Set-theoretical aspects of proof theory via Turing progressions - PowerPoint PPT Presentation

A personal note Proof Theory Turing progressions and ordinal analysis Set-theoretical aspects of proof theory via Turing progressions Joost J. Joosten Universitat de Barcelona Saturday 17-11-2018 Reflections on Set-Theoretic Reflection,


  1. A personal note Proof Theory Turing progressions and ordinal analysis Set-theoretical aspects of proof theory via Turing progressions Joost J. Joosten Universitat de Barcelona Saturday 17-11-2018 Reflections on Set-Theoretic Reflection, Montseny A conference in celebration of Joan Bagaria’s 60th birthday Joost J. Joosten Set theory & proof theory

  2. A personal note Proof Theory Turing progressions and ordinal analysis Joost J. Joosten Set theory & proof theory

  3. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Hilbert: can we safeguard real mathematics using finitistic methods only? Joost J. Joosten Set theory & proof theory

  4. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Hilbert: can we safeguard real mathematics using finitistic methods only? ◮ F ⊢ Con( R )? Joost J. Joosten Set theory & proof theory

  5. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Hilbert: can we safeguard real mathematics using finitistic methods only? ◮ F ⊢ Con( R )? ◮ Gentzen reduces G¨ odel’s negative to an example: Joost J. Joosten Set theory & proof theory

  6. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Hilbert: can we safeguard real mathematics using finitistic methods only? ◮ F ⊢ Con( R )? ◮ Gentzen reduces G¨ odel’s negative to an example: ◮ PRA + TI( ε 0 , Π 0 1 ) ⊢ Con( PA ) Here ε 0 := sup { ω, ω ω , ω ω ω , . . . } ; TI( ε 0 , Π 0 1 ) is the axiom scheme � � ∀ α ∀ β ≺ αϕ ( β ) → ϕ ( α ) → ∀ γϕ ( γ ) with ≺ some natural predicate on the natural numbers that defines a well-order of order-type ε 0 on N . Joost J. Joosten Set theory & proof theory

  7. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Tentative: | U | Con := min { ot( ≺ ) | PRA + TI( ≺ , PRIM) ⊢ Con( U ) } Joost J. Joosten Set theory & proof theory

  8. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Tentative: | U | Con := min { ot( ≺ ) | PRA + TI( ≺ , PRIM) ⊢ Con( U ) } ◮ What is a natural well-order on the natural numbers? Joost J. Joosten Set theory & proof theory

  9. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Tentative: | U | Con := min { ot( ≺ ) | PRA + TI( ≺ , PRIM) ⊢ Con( U ) } ◮ What is a natural well-order on the natural numbers? ◮ Kreisel’s pathological ordering � n < m if ∀ i < max < ( m , n ) ¬ Proof ZFC ( i , � 0 = 1 � ), n ≺ ZFC m = if ∃ i < max < ( m , n ) Proof ZFC ( i , � 0 = 1 � ). m < n Joost J. Joosten Set theory & proof theory

  10. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Tentative: | U | Con := min { ot( ≺ ) | PRA + TI( ≺ , PRIM) ⊢ Con( U ) } ◮ What is a natural well-order on the natural numbers? ◮ Kreisel’s pathological ordering � n < m if ∀ i < max < ( m , n ) ¬ Proof ZFC ( i , � 0 = 1 � ), n ≺ ZFC m = if ∃ i < max < ( m , n ) Proof ZFC ( i , � 0 = 1 � ). m < n ◮ By induction along ≺ ZFC prove ∀ y < x ¬ Proof ZFC ( y , � 0 = 1 � ) Joost J. Joosten Set theory & proof theory

  11. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Tentative: | U | Con := min { ot( ≺ ) | PRA + TI( ≺ , PRIM) ⊢ Con( U ) } ◮ What is a natural well-order on the natural numbers? ◮ Kreisel’s pathological ordering � n < m if ∀ i < max < ( m , n ) ¬ Proof ZFC ( i , � 0 = 1 � ), n ≺ ZFC m = if ∃ i < max < ( m , n ) Proof ZFC ( i , � 0 = 1 � ). m < n ◮ By induction along ≺ ZFC prove ∀ y < x ¬ Proof ZFC ( y , � 0 = 1 � ) ◮ PRA + TI( ≺ ZFC , PRIM) ⊢ Con(ZFC) Joost J. Joosten Set theory & proof theory

  12. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Tentative: | U | Con := min { ot( ≺ ) | PRA + TI( ≺ , PRIM) ⊢ Con( U ) } ◮ What is a natural well-order on the natural numbers? ◮ Kreisel’s pathological ordering � n < m if ∀ i < max < ( m , n ) ¬ Proof ZFC ( i , � 0 = 1 � ), n ≺ ZFC m = if ∃ i < max < ( m , n ) Proof ZFC ( i , � 0 = 1 � ). m < n ◮ By induction along ≺ ZFC prove ∀ y < x ¬ Proof ZFC ( y , � 0 = 1 � ) ◮ PRA + TI( ≺ ZFC , PRIM) ⊢ Con(ZFC) ◮ Other proof theoretical notions | U | sup , | U | Π 0 2 , | U | TI , . . . Joost J. Joosten Set theory & proof theory

  13. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) Joost J. Joosten Set theory & proof theory

  14. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) ◮ ATR 0 Joost J. Joosten Set theory & proof theory

  15. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) ◮ ATR 0 � �� ◮ ∀ ≺ � wo( ≺ ) → ∃ X ∀ α ∈ field( ≺ ) ∀ n n ∈ X α ↔ ϕ ( n , X <α ) for ϕ arithmetical (or Σ 0 1 ) Joost J. Joosten Set theory & proof theory

  16. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) ◮ ATR 0 � �� ◮ ∀ ≺ � wo( ≺ ) → ∃ X ∀ α ∈ field( ≺ ) ∀ n n ∈ X α ↔ ϕ ( n , X <α ) for ϕ arithmetical (or Σ 0 1 ) ◮ Ordinal notation requires small Veblen functions: Joost J. Joosten Set theory & proof theory

  17. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) ◮ ATR 0 � �� ◮ ∀ ≺ � wo( ≺ ) → ∃ X ∀ α ∈ field( ≺ ) ∀ n n ∈ X α ↔ ϕ ( n , X <α ) for ϕ arithmetical (or Σ 0 1 ) ◮ Ordinal notation requires small Veblen functions: ◮ ϕ 0 ( α ) := ω α , Joost J. Joosten Set theory & proof theory

  18. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) ◮ ATR 0 � �� ◮ ∀ ≺ � wo( ≺ ) → ∃ X ∀ α ∈ field( ≺ ) ∀ n n ∈ X α ↔ ϕ ( n , X <α ) for ϕ arithmetical (or Σ 0 1 ) ◮ Ordinal notation requires small Veblen functions: ◮ ϕ 0 ( α ) := ω α , ◮ ϕ ξ ( α ) := α th simultaneous fixpoint of all the { ϕ ζ } ζ<ξ . Joost J. Joosten Set theory & proof theory

  19. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) ◮ ATR 0 � �� ◮ ∀ ≺ � wo( ≺ ) → ∃ X ∀ α ∈ field( ≺ ) ∀ n n ∈ X α ↔ ϕ ( n , X <α ) for ϕ arithmetical (or Σ 0 1 ) ◮ Ordinal notation requires small Veblen functions: ◮ ϕ 0 ( α ) := ω α , ◮ ϕ ξ ( α ) := α th simultaneous fixpoint of all the { ϕ ζ } ζ<ξ . ◮ First Veblen inaccessible is Γ 0 : ∀ α, β ( α, β< Γ 0 → ϕ α ( β ) < Γ 0 ) Joost J. Joosten Set theory & proof theory

  20. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Ramified Analysis (second order arithtmetic) ◮ ATR 0 � �� ◮ ∀ ≺ � wo( ≺ ) → ∃ X ∀ α ∈ field( ≺ ) ∀ n n ∈ X α ↔ ϕ ( n , X <α ) for ϕ arithmetical (or Σ 0 1 ) ◮ Ordinal notation requires small Veblen functions: ◮ ϕ 0 ( α ) := ω α , ◮ ϕ ξ ( α ) := α th simultaneous fixpoint of all the { ϕ ζ } ζ<ξ . ◮ First Veblen inaccessible is Γ 0 : ∀ α, β ( α, β< Γ 0 → ϕ α ( β ) < Γ 0 ) ◮ Essentially, Sch¨ utte, Feferman: | ATR 0 | = Γ 0 Joost J. Joosten Set theory & proof theory

  21. A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory ◮ Impredicative notation systems are needed to go substantially beyond Γ 0 Joost J. Joosten Set theory & proof theory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend