sequestered susy breaking
play

Sequestered SUSY breaking Sven Krippendorf Rudolf Peierls Centre - PowerPoint PPT Presentation

Sequestered SUSY breaking Sven Krippendorf Rudolf Peierls Centre for Theoretical Physics String Group Seminar, Liverpool, 28/10/2014 based on: L. Aparicio, M. Cicoli, SK, A. Maharana, F. Muia, F. Quevedo: Sequestered dS string scenarios:


  1. Sequestered SUSY breaking Sven Krippendorf Rudolf Peierls Centre for Theoretical Physics String Group Seminar, Liverpool, 28/10/2014

  2. based on: • L. Aparicio, M. Cicoli, SK, A. Maharana, F. Muia, F. Quevedo: Sequestered dS string scenarios: soft terms 1409.1931 • R. Blumenhagen, J. Conlon, SK, S. Moster, F. Quevedo: Sequestered soft-masses in LVS 0906.3297 • M. Cicoli, SK, C. Mayrhofer, F. Quevedo, R. Valandro: Global realisations 1206.5237

  3. Motivation

  4. Status of SUSY • 126 GeV Higgs, no sign of SUSY yet but not excluded. • How is the hierarchy problem addressed? 
 `Best fit’ SUSY (compared to: compositeness, just SM, X-dim): 
 a) particular corner of MSSM (e.g. natural SUSY, N R MSSM) 
 b) split SUSY 
 c) large (intermediate) SUSY breaking scale • Problems: a) Why this special corner? b) Fine-tuning for hierarchy problem. c) Even more fine-tuning Problems should be addressed in UV completion of SM (guidance, explicit realisations, alternatives)

  5. String Models of SUSY: crucial ingredients soft-term spectrum Classical question: do classes of string models addressing these issues lead to distinct SUSY models?

  6. String Models of SUSY: crucial ingredients visible sector moduli stabilisation soft-term spectrum Classical question: do classes of string models addressing these issues lead to distinct SUSY models? de Sitter (uplifting)

  7. String Models of SUSY: crucial ingredients Realise moduli stabilisation with chirality visible sector moduli stabilisation soft-term spectrum Classical question: do classes of string models addressing these issues lead to distinct SUSY models? Construct dS vacua 
 with stabilised moduli de Sitter (uplifting)

  8. String Models of SUSY: crucial ingredients Realise moduli stabilisation with chirality visible sector moduli stabilisation how realistic? all moduli? realised explicitly in a soft-term spectrum explicit? global compactification? Classical question: do classes of string models addressing these issues lead to distinct SUSY models? Construct dS vacua 
 with stabilised moduli de Sitter (uplifting) stable?

  9. Why now? • Progress in string constructions (chiral, global, de Sitter models with branes at singularities) 
 Cicoli, (Klevers), SK, Mayrhofer, Quevedo, Valandro (2012, 2013) • Spectrum of soft-masses relevant for cosmology (dark matter, CMP, dark radiation, CAB) 
 work by Cicoli, Conlon, Marsh, Quevedo, et al. • LHC14, future SUSY searches. Can string theory be relevant in SUSY phenomenology discussion? 
 ➥ golden opportunity: interpolating between 
 scenarios in UV setups natural SUSY large SUSY split CMSSM cartoon of moduli space ?

  10. What’s new? • towards complete models 
 global realisation with visible sector and dS moduli stabilisation • uplifting dependence of soft-masses determined • D-terms in LVS soft-masses • pheno-ready soft-masses/parametrisation • UV realisations of interesting SUSY phenomenology scenarios (split susy, non- universal soft-masses)

  11. Content • Explicit type IIB models with moduli stabilisation, dS, chirality and broken SUSY • Soft-terms for sequestered models

  12. Strategy: general • Find classes of consistent compactification + ingredients (branes + fluxes) • Determine EFT, stabilise moduli • Determine phenomenological UV soft-terms • Analyse soft-terms @ low-energies

  13. A roadmap towards realistic string vacua in IIB global realisation: MC, SK, CM, FQ, RV 1206.3297

  14. A roadmap towards realistic string vacua in IIB T S(mall) T B(ig) global realisation: MC, SK, CM, FQ, RV 1206.3297

  15. A roadmap towards realistic string vacua in IIB RR, NSNS fluxes T S(mall) T B(ig) global realisation: MC, SK, CM, FQ, RV 1206.3297

  16. A roadmap towards realistic string vacua in IIB RR, NSNS fluxes T S(mall) T B(ig) ED3, g.c. global realisation: MC, SK, CM, FQ, RV 1206.3297

  17. A roadmap towards realistic string vacua in IIB RR, NSNS fluxes T S(mall) T B(ig) ED3, g.c. other hidden sectors (e.g. uplifting) global realisation: MC, SK, CM, FQ, RV 1206.3297

  18. A roadmap towards realistic string vacua in IIB O-Involution RR, NSNS fluxes T S(mall) T B(ig) ED3, g.c. other hidden sectors (e.g. uplifting) global realisation: MC, SK, CM, FQ, RV 1206.3297

  19. A roadmap towards realistic string vacua in IIB O-Involution RR, NSNS fluxes T S(mall) T B(ig) ED3, g.c. other hidden sectors (e.g. uplifting) T SM global realisation: MC, SK, CM, FQ, RV 1206.3297

  20. A roadmap towards realistic string vacua in IIB O-Involution RR, NSNS fluxes T S(mall) T B(ig) ED3, g.c. BSM D-brane setup other hidden sectors (e.g. uplifting) T SM here: BSM D-brane setup from D-branes at singularities global realisation: MC, SK, CM, FQ, RV 1206.3297

  21. Realisation of Roadmap • CY in Kreuzer-Skarke database with desired properties: LVS (blow-up), O-involution exchanging 2 dP n singularities for BSM D-brane models, no intersection non-perturbative and blow-up SM divisor • add D-branes, world-volume fluxes, check consistency conditions • stabilise Kähler moduli (and complex structure moduli) explicitly global realisation: MC, (DK), SK, CM, FQ, RV 1206.3297, (1404.7127) • analyse low-energy theory…

  22. A benchmark model …taken from a whole class 1206.5237

  23. 3 L 3 R A benchmark model 3 C • From search in Kreuzer-Skarke database, h 1,1 =4, h 1,2 =112: visible sector 2xdP 0 , hidden sector 1xdP 0 • O-involution exchanging visible sector, can realise g.c. on hidden sector and simple visible sector with trinification model • All consistency conditions satisfied (tadpoles, K- theory charges)

  24. 
 
 
 
 
 
 Moduli Stabilisation • complex structure assumed to be stabilised with 3-form fluxes (D3 tadpole allows to turn on fluxes.) + C i ¯ ! + ( T + + ¯ + ( G + ¯ C i T + + q 1 V 1 ) 2 G + q 2 V 2 ) 2 • ζ EFT: 
 K = − 2 ln V + V 2 / 3 , g 3 / 2 V V s W = W local + W bulk = W 0 + y ijk C i C j C k + A s e − π 3 T s + A b e − π 2 T b r V = 1 2 ⇣ √ ⌘ τ 3 / 2 3 τ 3 / 2 − s b 9 3 • singularity stabilisation: D-term minimum at ξ i =0 and C i =0 (soft-masses), F-terms sub-leading ! 2 ! 2 X X 1 1 V D = + q 1 i K i C i − ξ 1 q 2 i K i C i − ξ 2 , Re( f 1 ) Re( f 2 ) i i b τ + ξ 2 = − 4 q 2 ξ 1 = − 4 q 1 V V

  25. V 
 
 
 
 
 
 1. � 10 � 22 Moduli Stabilisation 8. � 10 � 23 6. � 10 � 23 4. � 10 � 23 2. � 10 � 23 Vol 4 � 10 6 6 � 10 6 8 � 10 6 1 � 10 7 • F-term potential 
 e − 2 a s τ s e − a s τ s ζ ' 0 . 522 ζ W 2 V F ' 8 + 3 3( a s A s ) 2 p τ s 0 � 4 a s A s W 0 τ s g 3 / 2 V 2 4 V V 3 W 0 ' 0 . 2 s p τ s ◆ 2 / 3 1 ✓ 3 ζ h V i ' 3 W 0 g s ' 0 . 03 e a s h τ s i h τ s i ' 2 4 a s A s A s ' 1 g s • FW flux on large four-cycle (matter fields), D-term potential 
 2 0 1 W 2 p 1 p 2 2 V 2 | φ c,j | 2 + V F ( T ) @X X 0 q bj | φ c,j | 2 � V tot = V D + V F ' + A V 2 / 3 V 2 / 3 j j • can account for dS/Minkowski minima... s ( ) V ' p W 2 h V i = W 2 ✓ h V i ◆ 3 + p 9 h V i 1 / 3 0 0 � ln V 8 / 3 + V F ( T ) 4 a 3 / 2 h V i 3 W 0 s

  26. 
 Two ways of getting dS • dS1: Hidden matter fields (1206.5237): 
 balancing 10 vs. 100 (log(V) vs V 1/3 ), get on with what’s there 
 s ( ) h V i = W 2 ✓ h V i ◆ 3 + p 9 h V i 1 / 3 0 � ln 4 a 3 / 2 h V i 3 W 0 s • dS2: Dilaton dependent non-perturbative effects (MC, AM, FQ, CB 1203.1750) τ 2 dS W dS = A dS ( U, S ) e − a dS ( S + κ dS T dS ) K dS = λ dS V ◆ 2 ✏ s ˆ ✓  dS a dS A dS V tot = V O ( V − 3 ) + ( κ dS a dS A dS ) 2 e − 2 a dS s e − 2 a dS s = 9 � dS ⇠ V 2 W 0 32 λ dS s V

  27. SUSY-breaking

  28. SUSY breaking in LVS LVS minimum breaks SUSY Conlon, Quevedo, Suruliz, … T S(mall) other hidden sectors T B(ig) (e.g. uplifting) SUSY ED3, g.c. BSM D-brane setup T SM ◆ W 0 M P g 2 ✓ s What are m soft ? m 3 / 2 = + . . . √ V 2 2 π

  29. 3 SUSY scenarios • Unsequestered GUT scale scenarios (F TSM ≠ 0): 
 M s ~M GUT , V~10 3 -10 7 , M SOFT ~m 3/2 
 (intermediate-scale SUSY, no CMP, W0 tuning) • Unsequestered intermediate scale strings (F TSM ≠ 0) 
 M s ~10 10 GeV, V~10 10 -10 15 , M SOFT ~m 3/2 ~1 TeV 
 (mild hierarchies, low-scale SUSY, CMP) • Sequestered high scale string models (F TSM =0) 
 M s ~10 15 GeV, V~10 6 -10 7 , M SOFT << m 3/2 
 (compatible with GUT, split and low-scale SUSY scenarios, no CMP)

  30. Focus: sequestered scenarios dS1: hidden matter dS2: dilaton dep. no-effects � dS E3/D7 � s � 0 D3/E(-1) NP dS effects small singularity NP effects cycle big cycle � b o r i e n t i f o l d i n v o l u t i o n � E3/D7 s NP small s i n g u l a r i t y s i n g u l a r i t y � b effects cycle b , � b , � big 0 0 S M S M cycle v i s i b l e v i s i b l e s e c t o r s e c t o r orientifold involution singularity singularity b b � � 0 0 , , SM SM visible visible sector sector

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend