sequential monte carlo
play

Sequential Monte Carlo Dr. Jarad Niemi STAT 615 - Iowa State - PowerPoint PPT Presentation

Sequential Monte Carlo Dr. Jarad Niemi STAT 615 - Iowa State University October 20, 2017 Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 1 / 72 Overview Outline Outline 1. State-space models 3. State and parameter


  1. Sequential Monte Carlo Dr. Jarad Niemi STAT 615 - Iowa State University October 20, 2017 Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 1 / 72

  2. Overview Outline Outline 1. State-space models 3. State and parameter inference p ( y | θ, ψ ) p ( θ | ψ ) p ( θ, ψ | y ) Definition Bootstrap filter Terminology Kernel density Notation Sufficient statistics 2. State inference p ( θ | y, ψ ) 4. Advanced SMC Exact inference SMC-MCMC Importance sampling Sequential importance Fixed parameter sampling SMC for marginal likelihood Bootstrap filter - resampling calculations Auxiliary particle filter Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 2 / 72

  3. Overview Bayesian inference Definition Bayes’ rule is P ( A | B ) = P ( B | A ) P ( A ) . P ( B ) In this rule, B represents what we know about the world and A represents what we don’t. Suppose p ( θ t , ψ | y 1: t − 1 ) is our current knowledge about the state of the world. We observe datum y t then p ( θ t , ψ | y 1: t ) = p ( y t | θ t , ψ ) p ( θ t , ψ | y 1: t − 1 ) . p ( y t | y 1: t − 1 ) where y 1: t = ( y 1 , y 2 , . . . , y t ) . Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 3 / 72

  4. State-space models Definition Definition A state-space model can be described by these conditional distributions: an observation equation: p o ( y t | θ t , ψ ) , an evolution equation: p e ( θ t | θ t − 1 , ψ ) , and a prior p ( θ 0 , ψ ) . where y t : an observation vector of length m θ t : a latent state vector of length p ψ : a fixed parameter vector of length q Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 4 / 72

  5. State-space models Graphical representation Graphical representation y t − 1 y t − 1 y t − 1 y t y t y t y t + 1 y t + 1 y t + 1 θ t − 1 θ t − 1 θ t − 1 θ t θ t θ t θ t + 1 θ t + 1 θ t + 1 p ( θ t | θ t − 1 , ψ ) p ( y t | θ t , ψ ) Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 5 / 72

  6. State-space models Interpretation Interpretation Model State interpretation Local level model True level Linear growth model True level and slope Seasonal factor model Seasonal effect Dynamic regression Time-varying regression coefficients Stochastic volatility Underlying volatility in the market Markov switching model Influenza epidemic on/off Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 6 / 72

  7. State-space models Examples Stochastic volatility 10 5 observation 0 −5 −10 value 10 5 volatility 0 −5 −10 0 250 500 750 1000 time Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 7 / 72

  8. State-space models Examples Markov switching model 3 2 observation 1 0 −1 value 3 2 1 state 0 −1 0 250 500 750 1000 time Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 8 / 72

  9. State-space models Inference Inference Definition The state filtering distribution is the distribution for the state conditional on all observations up to and including time t , i.e. p ( θ t | y 1: t , ψ ) = p ( θ t | y 1 , y 2 , . . . , y t , ψ ) . Definition The state smoothing distribution is the distribution for the state conditional on all observed data, i.e. p ( θ t | y 1: T , ψ ) = p ( θ t | y 1 , y 2 , . . . , y T , ψ ) where t < T . Definition The state forecasting distribution is the distribution for future states conditional on all observed data, i.e. p ( θ T + k | y 1: T , ψ ) = p ( θ T + k | y 1 , y 2 , . . . , y T , ψ ) where k > 0 . Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 9 / 72

  10. State-space models Inference y t − 1 y t y t + 1 θ t − 1 θ t θ t + 1 Filtering Smoothing Forecasting Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 10 / 72

  11. State-space models Filtering Filtering Goal: p ( θ t | y 1: t ) (filtered distribution) Recursive procedure: Assume p ( θ t − 1 | y 1: t − 1 ) Prior for θ t � p ( θ t | y 1: t − 1 ) = p ( θ t , θ t − 1 | y 1: t − 1 ) dθ t − 1 � = p ( θ t | θ t − 1 , y 1: t − 1 ) p ( θ t − 1 | y 1: t − 1 ) dθ t − 1 � = p ( θ t | θ t − 1 ) p ( θ t − 1 | y 1: t − 1 ) dθ t − 1 One-step ahead predictive distribution for y t � p ( y t | y 1: t − 1 ) = p ( y t , θ t | y 1: t − 1 ) dθ t � = p ( y t | θ t , y 1: t − 1 ) p ( θ t | y 1: t − 1 ) dθ t � = p ( y t | θ t ) p ( θ t | y 1: t − 1 ) dθ t Filtered distribution for θ t p ( y t | θ t , y 1: t − 1 ) p ( θ t | y 1: t − 1 ) p ( y t | θ t ) p ( θ t | y 1: t − 1 ) p ( θ t | y 1: t ) = = p ( y t | y 1: t − 1 ) p ( y t | y 1: t − 1 ) Start from p ( θ 0 ) . Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 11 / 72

  12. State-space models Smoothing Smoothing Goal: p ( θ t | y 1: T ) for t < T Backward transition probability p ( θ t | θ t +1 , y 1: T ) p ( θ t | θ t +1 , y 1: T ) = p ( θ t | θ t +1 , y 1: t ) p ( θ t +1 | θ t , y 1: t ) p ( θ t | y 1: t ) = p ( θ t +1 | y 1: t ) p ( θ t +1 | θ t ) p ( θ t | y 1: t ) = p ( θ t +1 | y 1: t ) Recursive smoothing distributions p ( θ t | y 1: T ) assuming we know p ( θ t +1 | y 1: T ) � p ( θ t | y 1: T ) = p ( θ t , θ t +1 | y 1: T ) dθ t +1 � = p ( θ t +1 | y 1: T ) p ( θ t | θ t +1 , y 1: T ) dθ t +1 � p ( θ t +1 | y 1: T ) p ( θ t +1 | θ t ) p ( θ t | y 1: t ) = dθ t +1 p ( θ t +1 | y 1: t ) � p ( θ t +1 | θ t ) = p ( θ t | y 1: t ) p ( θ t +1 | y 1: t ) p ( θ t +1 | y 1: T ) dθ t +1 Start from p ( θ T | y 1: T ) . Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 12 / 72

  13. State-space models Forecasting Forecasting Goal: p ( y T + k , θ T + k | y 1: T ) p ( y T + k , θ T + k | y 1: T ) = p ( y T + k | θ T + k ) p ( θ T + k | y 1: T ) Recursively, given p ( θ T +( k − 1) | y 1: T ) � p ( θ T + k | y 1: T ) = p ( θ T + k , θ T +( k − 1) | y 1: T ) dθ T +( k − 1) � = p ( θ T + k | θ T +( k − 1) , y 1: T ) p ( θ T +( k − 1) | y 1: T ) dθ T +( k − 1) � = p ( θ T + k | θ T +( k − 1) ) p ( θ T +( k − 1) | y 1: T ) dθ T +( k − 1) Start with k = 1 . Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 13 / 72

  14. State inference Outline 1. State-space models 3. State and parameter inference p ( y | θ, ψ ) p ( θ | ψ ) p ( θ, ψ | y ) Definition Bootstrap filter Terminology Kernel density Notation Sufficient statistics 2. State inference p ( θ | y, ψ ) 4. Advanced SMC Exact inference SMC-MCMC Importance sampling Sequential importance Fixed parameter sampling SMC for marginal likelihood Bootstrap filter - resampling calculations Auxiliary particle filter Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 14 / 72

  15. State inference Exact inference Exact inference Our goal for most of today is to find filtering methods. We assume p ( θ t − 1 | y 1: t − 1 ) is known and try to obtain p ( θ t | y 1: t ) using p ( θ t | θ t − 1 ) and p ( y t | θ t ) . Then, starting with p ( θ 0 | y 0 ) = p ( θ 0 ) we can find p ( θ t | y 1: t ) for all t . Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 15 / 72

  16. State inference Exact inference There are two important state-space models when the filtering updating is availably analytically: Hidden Markov models Dynamic linear models Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 16 / 72

  17. State inference Exact inference Hidden Markov models Definition A hidden Markov model (HMM) is a state-space model with an arbitrary observation equation and an evolution equation that can be represented by a transition probability matrix, i.e. p ( θ t = j | θ t − 1 = i ) = p ij . Filtering in HMMs Suppose we have a HMM with p states. Let q i = p ( θ t − 1 = i | y 1: t − 1 ) , then p � p ( θ t = j | y 1: t − 1 ) = q i p ij i =1 p ( θ t = j | y 1: t ) ∝ p ( y t | θ t = j ) p ( θ t = j | y 1: t − 1 ) . a i If p i ∝ a i for i ∈ { 1 , 2 , . . . , p } , then p i = i =1 a i . � p Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 17 / 72

  18. State inference Exact inference Definition A dynamic linear model (DLM) is a state-space model where both the observation and evolution equations are linear in the states and have additive Gaussian errors and the prior is Gaussian, i.e. y t = F t θ t + v t v t ∼ N (0 , V t ) θ t = G t θ t − 1 + w t w t ∼ N (0 , W t ) θ 0 ∼ N ( m 0 , C 0 ) where v t , w t , and θ 0 are independent of each other and mutually independent through time. Kalman filter Kalman smoother Jarad Niemi (STAT615@ISU) Sequential Monte Carlo October 20, 2017 18 / 72

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend