semistrict models of connected 3 types and tamsamani s
play

Semistrict models of connected 3-types and Tamsamanis weak - PDF document

Semistrict models of connected 3-types and Tamsamanis weak 3-groupoids Simona Paoli, Macquarie University Main themes Modelling connected 3-types: cat 2 -groups (Loday). Homotopy theory Tamsamanis weak Higher category theory


  1. Semistrict models of connected 3-types and Tamsamani’s weak 3-groupoids Simona Paoli, Macquarie University

  2. Main themes • Modelling connected 3-types: cat 2 -groups (Loday). Homotopy theory ✲ ✲ Tamsamani’s weak Higher category theory 3-groupoids (with 1 object) • Comparison problem. • Semistrictification results for Tamsamani’s weak 3-groupoids with 1 object.

  3. Cat n -groups as homotopy models Cat n (Gp) = Cat (Cat n − 1 (Gp)) • Definition Cat 0 (Gp) = Gp N : Cat n (Gp) → [∆ n op , Gp] • Multinerve • Classifying space of G ∈ Cat n (Gp) B G = B NG . f : G → G ′ mor(Cat n (Gp)) • Weak equivalence s.t. Bf weak homotopy equivalence. • Theorem [Whitehead n = 1] [Loday; Bullejos-Cegarra-Duskin; Porter, n ≥ 1] � connected B : Cat n (Gp) � ≃ H o : P n + 1-types ∼

  4. Tamsamani’s model: n=2 • Segal maps C category with finite limits, φ ∈ [∆ op , C ] η n : φ n → φ 1 × φ 0 · · · n × φ 0 φ 1 . n ≥ 2 fact: φ nerve of object of Cat C ⇔ η n isomorphism for all n ≥ 2. • Tamsamani’s weak 2-nerves, N 2 . φ ∈ [∆ 2 op , Set] φ n = ([ n ] , -) (i) φ n nerve of category of all n ≥ 0. (ii) φ 0 constant. (iii) Segal maps equivalences of categories ∀ n ≥ 2. • Weak 2-groupoids T 2 , φ ∈ N 2 s.t. (i) φ n nerve of groupoid, ∀ n ≥ 0. (ii) Tφ : ∆ op → Set nerve of groupoid ( Tφ ) n = π 0 φ n • External equivalences of 2-nerves f : φ → ψ φ 1 = � φ ( x,y ) x,y ∈ φ 0 (i) φ ( x,y ) → ψ ( fx,fy ) (ii) Tf equivalences of categories.

  5. Tamsamani’s model: n=3 • Tamsamani’s weak 3-nerves, N 3 . φ ∈ [∆ 3 op , Set] φ n = ([ n ] , - , -) (i) φ n ∈ N 2 ∀ n ≥ 0. (ii) φ 0 constant. (iii) Segal maps equivalences of 2-nerves ∀ n ≥ 2. • Weak 3-groupoids T 3 , φ ∈ N 3 s.t. (i) φ n ∈ T 2 ∀ n ≥ 0. (ii) T 2 φ : ∆ op → Set nerve of groupoid. • Fact: external equivalences in T 2 and T 3 ≡ weak homotopy equivalences • The subcategory S ⊂ T 3 φ ∈ S if φ ∈ T 3 and φ 0 (- , -) = {·} . • Theorem [Tamsamani] T 3 / ∼ ext ≃ H o (3-types) � � connected S / ∼ ext ≃ H o 3-types

  6. Summary: cat 2 -gp versus T 3 . Cat 2 (Gp) T 3 • G ∈ [∆ 2 op , Gp] • φ ∈ [∆ 3 op , Set] G n nerve of Cat (Gp) φ n ∈ T 2 Segal maps iso. φ 0 constant, Tφ iso. Segal maps equiva- lences • multisimplicial • multisimplicial inductive definition inductive definition based on Gp based on Set strict structure weak structure “cubical” “globular” • Main issues in the comparison: discretization ✲ globular cubical nerve ✲ [∆ op , Set] Gp • dealt with functors: disc Cat 2 (Gp) / ∼ ✲ D / ∼ ✲ H / ∼ ext D / ∼ H ⊂ S .

  7. The discretization functor • Key Lemma: G ∈ Cat 2 (Gp). There is φ ∈ Cat 2 (Gp) ∂ 0 ✲ c ✲ φ 1 φ 1 × φ 0 φ 1 ∂ 1 ✲ φ 0 ✛ σ 0 with φ 0 projective in Cat (Gp) and Bφ ≃ B G . • Projective objects in Cat (Gp) ✲ φ d d : φ 0 0 weak equivalence. φ d 0 discrete internal category. ✲ φ 0 , section t : φ d dt = id. 0 • The discrete multinerve ds N φ ∈ [∆ 2 op , Gp] d∂ 0 ✲ ✲ φ d · · · φ 1 × φ 0 φ 1 ✲ φ 1 d∂ 1 ✲ ✛ 0 ✲ ✛ ✛ σ 0 t i) B ds N φ = Bφ ≃ B G . ii) Segal maps weak equivalences in [∆ op , Gp]. ✲ D / ∼ disc : Cat 2 (Gp) / ∼ • Functor disc [ G ] = [ ds N φ ] D ⊂ [∆ 2 op , Gp] “internal 2-nerves”.

  8. � � First semistrictification result. • The subcategory H ⊂ S . φ ∈ S and Segal maps φ n → φ 1 × · · · n × φ 1 iso. Objects of H are “semistrict”. • Theorem [P.] Commutative diagram F Cat 2 (Gp) / ∼ H / ∼ ext � � � � � � � � � � � � � � � � � � � � � � � � � B B � � � � � � � � � � � � � � � � � � connected H o 3-types disc R ✲ D / ∼ ✲ H / ∼ ext . where F : Cat 2 (Gp) / ∼ Let H o S ( H ) ⊂ S / ∼ ext full subcategory with ob- jects in H . Then Cat 2 (Gp) ≃ H o S ( H ) . ∼ • Corollary: Every object of S is equivalent to an object of H through a zig-zag of external equiva- lences. • Remark: H ⊂ Mon( T 2 , × ) .

  9. � � Second semistrictification result. • The subcategory K ⊂ S . φ ∈ S and φ n strict 2-groupoid ∀ n ≥ 0. Objects of K are semistrict but K � = H . • Theorem[P.] Commutative diagram St S / ∼ ext K / ∼ ext � � � � � � � � � � � � � � � � � � � � � B B � � � � � � � � � � � � connected H o 3-types Let H o S ( K ) ⊂ S / ∼ ext full subcategory with ob- jects in K . Then S / ∼ ext ≃ H o S ( K ) idea of proof: G st ν ✲ T st ✲ Bigpd ✲ 2- gpd St : T 2 2 ψ ∈ S , ( St ψ ) n = St ψ n . ( St ψ ) n = St ψ n ≃ St ( ψ 1 × n · · · × ψ 1 ) ≃ ≃ St ψ 1 × · · · × St ψ 1 = ( St ψ ) 1 × · · · × ( St ψ ) 1 hence St ψ ∈ K .

  10. � � � � The comparison with Gray groupoids. • Gray groupoids. Gray =(2-cat, ⊗ gray ). Gray-enriched category with invertible cells. • Theorem [Joyal - Tierney, Leroy] H o (3 − types) ≃ Gray - gpd/ ∼ H o (conn. 3-types) ≃ ( Gray - gpd ) 0 / ∼ . • Theorem [P.] Commutative diagram S T H o S ( H ) ( Gray - gpd ) 0 / ∼ H o S ( K ) � � � �������������������� � � � � � � � � � � B � � � � B B � � � � � � connected H o 3-types idea of proof: - Monoidal functor G st ✲ ( Bigpd, × ) ✲ (2- gpd, ⊗ gray ) ( T 2 , × ) φ ∈ H ⊂ Mon ( T 2 , × ) ⇒ st G φ ∈ ( Gray - gpd ) 0 Let S ( φ ) = st Bic φ . - Every object of K is equivalent to one of St H . T [ ψ ] = T [ St φ ] = [ st G φ ].

  11. � � � � � � � � � Conclusion: modelling connected 3-types using Tamsamani’s model. • Tamsamani’s weak 3-groupoids, S . . . . � � . � . � � � . � � . � . � � . � . � � � . . � � � . � � � . � � . � . � � � . . . � � � ✲ . . . . . · · · . ✛ ✲ . . . . . . . ✲ ✛ . . . . . � � . � ✛ ✲ � � . � . � � � � � . � � ✲ � � . � � � � � � � � � � � � � � � strict � � weak S / ∼ ext ≃ H o connected � 3-types � � � � � � � � weak � � • Semistrict cases. a) H ⊂ S strict � � connected H o S ( H ) ≃ H o weak 3-types � � � � H ⊂ Mon ( T 2 , × ) . � � � � � strict � � b) K ⊂ S strict � � strict connected H o S ( K ) ≃ H o � 3-types � � � � � � � � weak � �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend