seminar construction and operation of the bern exo 100
play

Seminar Construction and operation of the Bern EXO - 100 cryogenic - PowerPoint PPT Presentation

Seminar Construction and operation of the Bern EXO - 100 cryogenic facility for R&D in liquid xenon: advances in barium ion tagging Sbastien Delaquis University of Bern Switzerland SLAC, 17th November 2015 Outline Double-beta


  1. Seminar Construction and operation of the Bern “EXO - 100” cryogenic facility for R&D in liquid xenon: advances in barium ion tagging Sébastien Delaquis University of Bern Switzerland SLAC, 17th November 2015

  2. Outline Double-beta decay ( ββ )  a way to address some of the open questions in the neutrino sector The Enriched Xenon Observatory (EXO)  EXO’s approach to address the challenge  the concept of barium ion tagging – open R&D questions Advances in barium ion tagging: • Analysis of alpha decays with EXO-200 data  ion properties relevant for ion tagging in liquid xenon • The EXO-100 facility  construction and operation of a cryogenic R&D facility 2

  3. Neutrino physics: status quo Measured with neutrino oscillation experiments: 3 mixing angles 2 Δ𝑛 2 Open questions in the neutrino sector: • Mass hierarchy • Absolute neutrino masses • Nature of neutrino mass (Dirac, Majorana) • CP violation in the lepton sector • Massive sterile neutrinos Sébastien Delaquis – Seminar, SLAC, 17th November 2015 3

  4. Double-beta decay: determining the absolute neutrino mass Search for neutrinoless double-beta decay  sensitive to Majorana neutrinos 2 2 2 = 2 𝑛 𝑗 𝑉 𝑓𝑗 2 𝑓 𝜷 𝒋 𝑛 𝑗 𝑛 𝛾𝛾 𝑉 𝑓𝑗 = 𝑗 𝑗 Direct neutrino mass determination: 2(eff) = • Kinematics of weak decays 𝑉 𝑓𝑗 2 𝑛 𝜉 𝑗 2 𝑛 𝜉 𝑓 𝑗 • Time-of-flight measurment (supernova) 𝑁 = 𝑛 𝜉 𝑗 Measurements of the anisotropies of the primordial 𝑗 microwave background Sébastien Delaquis – Seminar, SLAC, 17th November 2015 4

  5. Double-beta decay: decay modes Two neutrino double-beta decay ( 2νββ ) • Allowed by the SM of particle physics • Observed in 11 isotopes so far: 𝟐𝟒𝟕 𝒀𝒇: 𝟔𝟓 2𝜉𝛾𝛾 = 2.165 ± 0.016 𝑡𝑢𝑏𝑢 ± 0.059 𝑡𝑧𝑡 10 21 yr 𝑈 1/2 EXO Collaboration: Phys. Rev. C 89, 015502 (2014) As a comparison the age of the universe: (13.798 ± 0.037) 10 9 yr This is the most precisely measured half-life of any 2 nbb decay to 2νββ: 2𝑜 0 → 2𝑞 + + 2𝑓 − + 2 𝜉 𝑓 date. Moreover, this is the slowest process ever directly observed by mankind! Sébastien Delaquis – Seminar, SLAC, 17th November 2015 5

  6. Double-beta decay: decay modes Neutrinoless double-beta decay ( 0νββ ) • Only allowed if the neutrino is a Majorana particle! Violating total lepton number: Δ𝑀 = 2 • • Hypothetical process: not observed so far (one controversal claim). 1 2 0𝜉 = 𝐻 0𝜉 𝑁 0𝜉 2 𝑛 𝛾𝛾 𝑈 0νββ: 2𝑜 0 → 2𝑞 + + 2𝑓 − 1/2 𝐻 0𝜉 phase space factor 𝑁 0𝜉 nuclear matrix element 𝑛 𝛾𝛾 effective neutrino mass Sébastien Delaquis – Seminar, SLAC, 17th November 2015 6

  7. Double-beta decay: decay modes Seperating 0νββ from 2νββ 0νββ: 2𝑜 0 → 2𝑞 + + 2𝑓 − 2νββ: 2𝑜 0 → 2𝑞 + + 2𝑓 − + 2 𝜉 𝑓 Energy resolution is essential! Sébastien Delaquis – Seminar, SLAC, 17th November 2015 7

  8. Double-beta decay: candidate isotopes Realistically observable only in a few even-even nuclei (35 naturaly occuring isotopes). Q-value Sargent’s rule: decay rate ∝ Q 5 • • backgrounds Natural abundance of the isotope and 𝐵, 𝑎 → 𝐵, 𝑎 − 2 + 2𝑓 − + 2 2𝜉𝛾𝛾: 𝜉 𝑓 ease of enrichment A suited detection technique • source as detection medium • easy to purify (nat. rad.) Sébastien Delaquis – Seminar, SLAC, 17th November 2015 8

  9. Double-beta decay: detection technique cathode at high voltage e- e- e- e- e- Electric field e- charge read-out system PMTs for scintillation light Sébastien Delaquis – Seminar, SLAC, 17th November 2015 23

  10. Double-beta decay: ββ experiments 76 Ge: γ Advantage of xenon TPC: GERDA • segmentation 130 Te: CUORE 𝛿 𝛾 136 Xe: multi site (MS) single site (SS) EXO KamLand-Zen • good energy resolution • Others: unique capability to identify the decay product; NEMO barium tagging Sébastien Delaquis – Seminar, SLAC, 17th November 2015 10

  11. University of Alabama, Tuscaloosa AL, USA - D. Auty, T. Didberidze, M. Hughes, A. Piepke, R. Tsang University of Bern, Switzerland - S. Delaquis, R. Gornea, T. Tolba, J-L. Vuilleumier California Institute of Technology, Pasadena CA, USA - P. Vogel Multi stage project: Carleton University, Ottawa ON, Canada - V. Basque, M. Dunford, K. Graham, C. Hargrove, R. Killick, T. Koffas, F. Leonard, C. Licciardi, M.P. Rozo, D. Sinclair Colorado State University, Fort Collins CO, USA - C. Benitez-Medina, C. Chambers, A. Craycraft, W. Fairbank, Jr., T. Walton Drexel University, Philadelphia PA, USA - M.J. Dolinski, M.J. Jewell, Y.H. Lin, E. Smith, Y.-R Yen • EXO-200 Duke University, Durham NC, USA - P.S. Barbeau IHEP Beijing, People ’ s Republic of China - G. Cao, X. Jiang, L. Wen, Y. Zhao • University of Illinois, Urbana-Champaign IL, USA - D. Beck, M. Coon, J. Ling, M. Tarka, J. Walton, L. Yang nEXO Indiana University, Bloomington IN, USA - J. Albert, S. Daugherty, T. Johnson, L.J. Kaufman University of California, Irvine, Irvine CA, USA - M. Moe • nEXO with barium tagging ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich Laurentian University, Sudbury ON, Canada - B. Cleveland, A. Der Mesrobian-Kabakian, J. Farine, B. Mong, U. Wichoski University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall University of Massachusetts, Amherst MA, USA - J. Abdollahi, T. Daniels, S. Johnston, K. Kumar, A. Pocar, D. Shy University of Seoul, South Korea - D.S. Leonard SLAC National Accelerator Laboratory, Menlo Park CA, USA - M. Breidenbach, R. Conley, A. Dragone, K. Fouts, R. Herbst, S. Herrin, A. Johnson, R. MacLellan, K. Nishimura, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen Stanford University, Stanford CA, USA - J. Bonatt, T. Brunner, J. Chaves, J. Davis, R. DeVoe, D. Fudenberg, G. Gratta, S.Kravitz, D. Moore, I. Ostrovskiy, A. Rivas, A. Schubert, D. Tosi, K. Twelker, M. Weber Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino TRIUMF, Vancouver BC, Canada – J. Dilling, R. Krucken, F. Retière, V. Strickland Sébastien Delaquis – Seminar, SLAC, 17th November 2015 11

  12. The Enriched Xenon Observatory: EXO-200 set-up Located at WIPP in New Mexico, 655 m.w.e below ground Sébastien Delaquis – Seminar, SLAC, 17th November 2015 12

  13. The Enriched Xenon Observatory: EXO-200 results Expected background Th-232 chain : 16.0 U-238 chain : 8.1 Xe-137 : 7.0 Total expected: 31.1 ± 3.8 Total observed: 39 Best fit for 0 nbb : 9.9 2𝜉𝛾𝛾 = 2.165 ± 0.016 𝑡𝑢𝑏𝑢 ± 0.059 𝑡𝑧𝑡 10 21 yr 𝑈 1/2 EXO Collaboration: Phys. Rev. C 89, 015502 (2014) 0𝜉𝛾𝛾 > 1.1 10 25 yr at 90% C. L. 𝑈 1/2 EXO Collaboration: Nature (London) 510, 299-234 (2014) Sébastien Delaquis – Seminar, SLAC, 17th November 2015 13

  14. The Enriched Xenon Observatory: EXO-200 performance Sébastien Delaquis – Seminar, SLAC, 17th November 2015 14

  15. The Enriched Xenon Observatory: nEXO A single TPC 5 tn of enriched xenon Operational in ~2020 Sébastien Delaquis – Seminar, SLAC, 17th November 2015 15

  16. The Enriched Xenon Observatory: nEXO expected performence How can we further increase sensitivity? Make it HUGE?!?... Not possible because of: Ba tagging • xenon world production • 𝟐𝟒𝟕 𝑪𝒃 ++ + 2𝑓 − (+2 enrichment rate 136 𝑌𝑓 𝜉 𝑓 ) • cost… 54 𝟔𝟕 𝛿 -line of 214 Bi within 10keV of the Q-value • Sébastien Delaquis – Seminar, SLAC, 17th November 2015 16

  17. The Enriched Xenon Observatory: expected performence of nEXO w. Ba tagging Advantage of barium tagging: tag all backgrounds not related to ββ • • ultimate background 2νββ Sébastien Delaquis – Seminar, SLAC, 17th November 2015 17

  18. The Enriched Xenon Observatory: barium tagging technique Ba + grabber probe cavity ionizer mass filter ion trap e- e- e- e- e- e- CCD Sébastien Delaquis – Seminar, SLAC, 17th November 2015 18

  19. The Enriched Xenon Observatory: barium tagging technique Ba + grabber probe cavity ionizer mass filter ion trap e- e- e- e- e- e- CCD Sébastien Delaquis – Seminar, SLAC, 17th November 2015 19

  20. The Enriched Xenon Observatory: polonium tagging 218 Po decay 222 Rn decay Sébastien Delaquis – Seminar, SLAC, 17th November 2015 20

  21. The Enriched Xenon Observatory: polonium tagging technique Ba + grabber probe 218 Po decay alpha detector e- e- e- 222 Rn decay e- e- e- Sébastien Delaquis – Seminar, SLAC, 17th November 2015 21

  22. The Enriched Xenon Observatory: steps towards barium / polonium tagging Important properties of the decay product • fraction of ions • drift speed • neutralisation during drift Need for a test set-up: • cryostat • TPC • displacement device • ion grabbing probe → requires that barium is ionized!!! Sébastien Delaquis – Seminar, SLAC, 17th November 2015 22

  23. Analysis of alpha decays with EXO-200 data: concept Important properties of the decay product • fraction of ions • drift speed • neutralisation during drift Sébastien Delaquis – Seminar, SLAC, 17th November 2015 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend