semi analytical solutions for transport pdes in
play

Semi-analytical solutions for transport PDEs in heterogeneous media - PowerPoint PPT Presentation

Monash Workshop on Numerical Di ff erential Equations and Applications Melbourne, Australia, 10-14 February 2020 Semi-analytical solutions for transport PDEs in heterogeneous media Dr Elliot Carr elliot.carr@qut.edu.au @ElliotJCarr


  1. Monash Workshop on Numerical Di ff erential Equations and Applications Melbourne, Australia, 10-14 February 2020 Semi-analytical solutions for transport PDEs in heterogeneous media Dr Elliot Carr � elliot.carr@qut.edu.au � @ElliotJCarr � https: // elliotcarr.github.io /

  2. Transport equations Heterogeneous media ◮ Generic scalar transport equation: R ( x ) ∂ c Ω ⊂ R d . ∂ t = ∇ · ( D ( x ) ∇ c − v ( x ) c ) + S ( c , x ) , ◮ Heterogeneous media: coe ffi cients vary spatially. ◮ This talk is comprised of two parts: • Part 1: Semi-analytical solutions to the advection-di ff usion-reaction equation in heteroge- neous (layered) media. • Part 2: Semi-analytical solutions to the homogenization boundary value problem for di ff u- sion in 2D heterogeneous media. Dr Elliot Carr https: // elliotcarr.github.io / 1 / 31

  3. Advection-di ff usion-reaction in layered media Problem description         − Inlet Outlet c 1 ( x , t ) c 2 ( x , t ) c m − 1 ( x , t ) c m ( x , t ) x 0 ℓ 1 ℓ 2 ℓ m − 2 ℓ m − 1 L Layer m − 1 Layer 1 Layer 2 Layer m ( ) R ( x ) ∂ c ∂ t = ∂ D ( x ) ∂ c ∂ x − v ( x ) c − µ ( x ) c + γ ( x ) . ∂ x    R 1 , D 1 , v 1 , µ 1 , γ 1 , 0 < x < ℓ 1 ,      R 2 , D 2 , v 2 , µ 2 , γ 2 , ℓ 1 < x < ℓ 2 ,   R ( x ) , D ( x ) , v ( x ) , µ ( x ) , γ ( x ) =  . .   . .   . .     R m , D m , v m , µ m , γ m , ℓ m − 1 < x < L . Dr Elliot Carr https: // elliotcarr.github.io / 2 / 31

  4. Advection-di ff usion-reaction in layered media Governing equations ◮ Governing equations (Guerrero et al., 2013; van Genuchten and Alves, 1982): ∂ 2 c i ∂ c i ∂ c i R i ∂ t = D i ∂ x 2 − v i ∂ x − µ i c i + γ i , i = 1 , . . . , m , c i ( x , 0) = f i , c i ( ℓ i , t ) = c i + 1 ( ℓ i , t ) , ∂ c i ∂ c i + 1 θ i D i ∂ x ( ℓ i , t ) = θ i + 1 D i + 1 ∂ x ( ℓ i , t ) , where v i θ i = v i + 1 θ i + 1 . ◮ Nomenclature: • c i ( x , t ): solute concentration [ML − 3 ] in the i th layer • R i : retardation factor [ − ] • D i : dispersion coe ffi cient [L 2 T − 1 ] • v i : pore-water velocity [LT − 1 ] • µ i : rate constant for first-order decay [T − 1 ] • γ i : rate constant for zero-order production [T − 1 ] • θ i : volumetric water content [L 3 L − 3 ] in the i th layer Dr Elliot Carr https: // elliotcarr.github.io / 3 / 31

  5. Advection-di ff usion-reaction in layered media Typical boundary conditions ◮ Inlet boundary condition ( x = 0): • Concentration-type: c 1 (0 , t ) = c 0 ( t ) , • Flux-type: ∂ c 1 v 1 c 1 (0 , t ) − D 1 ∂ x (0 , t ) = v 1 c 0 ( t ) , ◮ Outlet boundary condition ( x = L ): ∂ c m ∂ x ( L , t ) = 0 . ◮ General boundary conditions: ∂ c 1 Inlet: a 0 c 1 (0 , t ) − b 0 ∂ x (0 , t ) = g 0 ( t ) , ∂ c m Outlet: a L c m ( L , t ) + b L ∂ x ( L , t ) = g L ( t ) . Dr Elliot Carr https: // elliotcarr.github.io / 4 / 31

  6. Advection-di ff usion-reaction in layered media Analytical solution via eigenfunction expansion ◮ Eigenfunction expansion solution: � ∞ c i ( x , t ) = a n T n ( λ n ; t ) X n ( λ n ; x ) . n = 1 ◮ Eigenvalues ( λ n , n ∈ N + ) are identified by substituting eigenfunctions into the boundary and interface conditions and enforcing a non-trivial solution. ◮ This yields a nonlinear transcendental equation for the eigenvalues arising from the evaluation of a 2 m × 2 m determinant f ( λ ) = 0 , A ∈ R 2 m × 2 m . where f ( λ ) : = det( A ( λ )) , ◮ For many layers (large m ) evaluating f ( λ ) is numerically unstable. ◮ Solutions tend to breakdown for m > 10 layers (Carr and Turner, 2016). ◮ Solutions for maximum of seven layers given by Liu et al. (1998) (advection-di ff usion only with µ i = γ i = 0) and Guerrero et al. (2013) (advection-di ff usion-reaction with γ i = 0). Dr Elliot Carr https: // elliotcarr.github.io / 5 / 31

  7. Advection-di ff usion-reaction in layered media Analytical solution via Laplace transform ◮ Idea: reformulate the model into m isolated single layer problems (Carr and Turner, 2016; Rodrigo and Worthy, 2016; Zimmerman et al., 2016). ◮ Introduce unknown functions of time, g i ( t ) ( i = 1 , . . . , m − 1), at the layer interfaces (Carr and Turner, 2016; Rodrigo and Worthy, 2016): ∂ c i g i ( t ) : = θ i D i ∂ x ( ℓ i , t ) . ◮ Yields isolated single layer problems e.g. in the first layer: ∂ 2 c 1 ∂ c 1 ∂ c 1 R 1 ∂ t = D 1 ∂ x 2 − v 1 ∂ x − µ 1 c 1 + γ 1 , c 1 ( x , 0) = f 1 , ∂ c 1 a 0 c 1 (0 , t ) − b 0 ∂ t (0 , t ) = g 0 ( t ) , ∂ c 1 θ 1 D 1 ∂ x ( ℓ 1 , t ) = g 1 ( t ) . ◮ Each problem coupled together by imposing continuity of concentration at the interfaces. Dr Elliot Carr https: // elliotcarr.github.io / 6 / 31

  8. Advection-di ff usion-reaction in layered media Analytical solution via Laplace transform ◮ Solve each layer problem expressing the solution in terms of the unknown interface functions. ◮ Taking Laplace transforms yields boundary value problems e.g. in the first layer: d 2 C 1 d C 1 d x − ( µ 1 + R 1 s ) C 1 = − R 1 f 1 − γ 1 D 1 d x 2 − v 1 s , d C 1 a 0 C 1 (0 , s ) − b 0 d x (0 , s ) = G 0 ( s ) , d C 1 θ 1 D 1 d x ( ℓ 1 , s ) = G 1 ( s ) , where C i ( x , s ) = L{ c i ( x , t ) } denotes the Laplace transform of c i ( x , t ) with transformation variable s ∈ C and G i ( s ) = L{ g i ( t ) } for i = 1 , . . . , m − 1. ◮ Laplace transforms of the boundary functions: G 0 ( s ) = L{ g 0 ( t ) } G L ( s ) = L{ g L ( t ) } are assumed to be able to be found analytically. Dr Elliot Carr https: // elliotcarr.github.io / 7 / 31

  9. Advection-di ff usion-reaction in layered media Analytical solution via Laplace transform ◮ The boundary value problems all involve second-order constant-coe ffi cient di ff erential equations ◮ Solving using standard techniques defines the concentration in the Laplace domain: C 1 ( x , s ) = A 1 ( x , s ) G 0 ( s ) + B 1 ( x , s ) G 1 ( s ) + P 1 ( x , s ) , i = 2 , . . . , m − 1 , C i ( x , s ) = A i ( x , s ) G i − 1 ( s ) + B i ( x , s ) G i ( s ) + P i ( x , s ) , C m ( x , s ) = A m ( x , s ) G m − 1 ( s ) + B m ( x , s ) G L ( s ) + P m ( x , s ) , where the functions P i , A i and B i ( i = 1 , . . . , m ) are known functions. ◮ To determine G 1 ( s ) , . . . , G m − 1 ( s ), the Laplace transformations of the unknown interface functions g 1 ( t ) , . . . , g m − 1 ( t ), we enforce continuity of concentration at each interface in the Laplace domain: C i ( ℓ i , s ) = C i + 1 ( ℓ i , s ) , i = 1 , . . . , m − 1 . (1) ◮ Thisyieldsatridiagonal systemoflinearequations Ax = b , where x = ( G 1 ( s ) , . . . , G m − 1 ( s )) T . ◮ Summary: Concentration can be evaluated at any x and s in the Laplace domain. Dr Elliot Carr https: // elliotcarr.github.io / 8 / 31

  10. Advection-di ff usion-reaction in layered media Analytical solution via Laplace transform ◮ Inversion of the Laplace transform is carried out numerically. ◮ Hence, our solution method is semi -analytical. ◮ Trefethen et al. (2006) defines the following approximation: � � � N c i ( x , t ) = L − 1 { C i ( x , s ) } ≈ − 2 t ℜ w k C i ( x , s k ) , k = 1 k odd where N is even, s k = z k / t and w k , z k ∈ C are the residues and poles of the best ( N , N ) rational approximation to e z on the negative real line. ◮ Summary: Concentration can be evaluated at any x and t in the time domain. ◮ Attractiveness is that the solution is completely explicit. Unlike eigenfunction expansion solutions that require a nonlinear algebraic equation to be solved for the eigenvalues: f ( λ ) = 0 , A ∈ R 2 m × 2 m . f ( λ ) : = det( A ( λ )) , where Dr Elliot Carr https: // elliotcarr.github.io / 9 / 31

  11. Advection-di ff usion-reaction in layered media Heaviside inlet boundary condition ◮ In solute transport problems, it is common to apply a Heaviside step function at the inlet:   c 0 , 0 < t < t 0 ,  c 0 ( t ) = c 0 H ( t 0 − t ) =   0 , t > t 0 , where c 0 is a constant and t 0 > 0 is the duration. ◮ Yields G 0 ( s ) = exp( − t 0 s ) / s and G 0 ( s ) = v 1 exp( − t 0 s ) / s for the concentration-type and flux-type boundary condition, respectively. ◮ Such exponential functions are well known to cause numerical problems in algorithms for inverting Laplace transforms (Kuhlman, 2013). ◮ To overcome this problem, we use superposition of solutions   � c i ( x , t ) , 0 < t < t 0 ,  c i ( x , t ) =   � c i ( x , t ) − � c i ( x , t − t 0 ) , t > t 0 , where � c i ( x , t ) is the solution with g 0 ( t ) = c 0 and � c i ( x , t ) is the solution with g 0 ( t ) = c 0 , f i = 0 and γ i = 0. Dr Elliot Carr https: // elliotcarr.github.io / 10 / 31

  12. Advection-di ff usion-reaction in layered media One layer test case ∂ c 1 ∂ c 2 v 1 c 1 (0 , t ) − D 1 BCs : ∂ x (0 , t ) = v 1 c 0 , ∂ t (20 , t ) = 0 . Benchmarked against single-layer analytical solutions (van Genuchten and Alves, 1982). Absolute errors t = 10 − 3 t = 0 . 1 t = 0 . 2 t = 0 . 4 t = 0 . 6 t = 4 4 . 11 × 10 − 14 5 . 53 × 10 − 10 8 . 69 × 10 − 9 1 . 24 × 10 − 9 5 . 84 × 10 − 8 6 . 10 × 10 − 10 Dr Elliot Carr https: // elliotcarr.github.io / 11 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend