selection of recent theory and phenomenology developments
play

Selection of recent theory and phenomenology developments in forward - PowerPoint PPT Presentation

Selection of recent theory and phenomenology developments in forward physics within high-energy factorization Piotr Kotko Institute of Nuclear Physics (Cracow) supported by LIDER/02/35/L-2/10/NCBiR/2011 based on A. van Hameren, P .K., K.


  1. Selection of recent theory and phenomenology developments in forward physics within high-energy factorization Piotr Kotko Institute of Nuclear Physics (Cracow) supported by LIDER/02/35/L-2/10/NCBiR/2011 based on A. van Hameren, P .K., K. Kutak JHEP 1212 (2012) 029, JHEP 1301 (2013), arXiv:1308.0452 078

  2. PLAN • High-energy factorization • off-shell amplitudes and gauge invariance • automated calculation of tree-level off-shell amplitudes • forward processes ⇒ one-leg-off-shell amplitudes • Unintegrated gluon densities • evolution with the saturation effect • nonlinear extension of CCFM • Applications to LHC • Monte Carlo implementations • results for three jet production • bb production in weak processes 1

  3. High Energy Factorization Production of a state X in a collision of hadrons A , B at high energies � d 2 k T A � dx A � d 2 k T B � dx B d σ AB → X = π x A π x B F ( x A , k T A ) d σ g ∗ g ∗ → X ( x A , x B , k T A , k T B ) F ( x B , k T B ) • motivated by CCH factorization for heavy quark production 1 The HARD part is defined by the eikonal projectors p A k A HARD = | � k T A | p µ A k B p B where = | � k T B | p µ B high-energy kinematics: k µ A ≃ x A p µ A + k µ ⇒ the amplitude g ∗ g ∗ → QQ is gauge invariant T A k µ B ≃ x B p µ B + k µ T B • originally F are BFKL unintegrated gluon densities 1 S. Catani, M. Ciafaloni, F. Hautmann, Nucl.Phys. B366 (1991) 135-188 2

  4. High Energy Factorization (cont.) • for a generic multiparticle state X the amplitude g ∗ g ∗ → X is not gauge invariant k A additional terms are needed to ⇒ HARD recover the gauge invariance . . . k B • in terms of the Lipatov’s effective action the correct HARD part corresponds to Quasi-Multi-Regge kinematics; one can use the resulting Feynman rules 1 • one can also find the lacking contributions by demanding the gauge invariance → suitable for automated calculation of HARD for multiple final states → two new methods (using helicity method and implemented in MC codes) Comments • this is not a theorem of PQCD (actually k T -factorization is broken) • extremaly useful in phenomenology studies, even with HARD at tree level 1 E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov, Nucl.Phys. B721 (2005) 111-135 3

  5. Automatic Off-shell Helicity Amplitudes An amplitude g ∗ ( k A ) g ∗ ( k B ) → X can be disentangled from q A q B → q ′ A q ′ B X . k A k A + . . . + . . . . . . . . . k B k B k B However, if we want to have explicit high-energy kinematics for k A , k B the quarks q ′ A , q ′ B cannot be on-shell ⇒ amplitude for q A q B → q ′ A q ′ B X is not gauge invariant It’s possible to have both on-shellness for all external partons and high-energy kinematics 1 : � � � � → the amplitude q A ( p A ) q B ( p B ) → q ′ p ′ q ′ p ′ X need not to be physical A A B B → introduce on-shell complex momenta for the quarks using helicity formalism (the gauge invariance is still there) → more details on A. van Hameren’s talk 1 A. van Hameren, P . Kotko, K. Kutak, JHEP 1301 (2013) 078 4

  6. Forward Processes and High Energy factorization Forward processes (relevant for small x) correspond to asymmetric configurations 4 10 3 jets production at √ � � = 5.02 TeV � � 3 10 � � � � p T i kinematic cuts : 35 GeV < p T 3 < p T 2 < p T 1 exp ( η i ) x A = √ 2 10 | η 1,2 | < 2.8 [ pb ] S 3.2 < | η 3 | < 4.7 i � � proton nonlinear � � 10 � � � � p T i Pb nonlinear dσ / d x a proton linear x B = exp ( − η i ) √ 1 S i -1 10 x as = | x A − x B | / ( x A + x B ) -2 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x as This accounts for a simplification: • large fractions x B → collinear approach (with on-shell parton) • small fractions x A → high energy factorization (with off-shell parton) � d 2 k T A � dx A � � dx B F ( x A , k T A ) f b / B ( x B ) d σ g ∗ a → X ( x A , x B , k T A ) 1 d σ AB → X = π x A b 1 M. Deak, F. Hautmann, H. Jung, K. Kutak, JHEP 0909 (2009) 121 5

  7. One-leg Off-shell Helicity Amplitudes A contribution to N -jet • not gauge-invariant process: g ∗ g → gg . . . g k A . � = 0 . . k A . . . M ( ε 1 . . . , k i , . . . , ε N ) � 0 • one cannot use helicity method, ≡ M ( ε 1 , . . . , ε N ) i.e. ε µ k ( q ) = ε µ k ( q ′ ) + k µ β k ( q , q ′ ) • there exists an “amplitude” W such that � M = M + W satisfies � M ( ε 1 , . . . , k i , . . . , ε N ) = 0 • the “gauge-restoring” amplitude W can be obtained by using the ordinary QCD Slavnov-Taylor identities 1 1 A. van Hameren, P . Kotko, K. Kutak, JHEP 1212 (2012) 029 6

  8. One-leg Off-shell Helicity Amplitudes (cont.) • introduce a reduction formula for the off-shell amplitude ( ˜ G – the Green function) �� � � � � � � ˜ � � � � � � � p µ A k 2 1 ε µ 1 k 2 N ε µ N M ( ε 1 , . . . , ε N ) = k A · p A → 0 lim lim 1 → 0 . . . lim k T A . . . G µ A µ 1 ...µ N A 1 N k 2 k 2 N → 0 • apply Slavnov-Taylor identities to ˜ G to determine gauge contributions . . . . . = . . . . + . . . . . . + + . + . . • after applying the reduction formula (and using axial gauge for internal propagators) a single term survives The r.h.s term is precisely the amount of gauge- . . . = . . . invariance violation and can be calculated. • trading the external ghosts for the longitudinal projections of the gluons and summing the gauge contributions we get the result 7

  9. One-leg Off-shell Helicity Amplitudes (cont.) The complete color-ordered result is  � �  � �   � � � � �  A ( ε 1 , . . . , ε N ) = − k T A   k T A · J ( ε 1 , . . . , ε N ) �  � − g � N  ε 1 · p A . . . ε N · p A    +  √  k 1 · p A ( k 1 − k 2 ) · p A . . . ( k 1 − . . . − k N − 1 ) · p A 2 where (below k ij = k i + k i + 1 + . . . + k j ) � � k µ 1 N p A ,ν + k 1 N ν p µ J µ ( ε 1 , . . . , ε N ) = − i A g µ ν − k 2 k 1 N · p A 1 N   � N − 1 � �   V ναβ k 1 i , k ( i + 1 ) N J α ( ε 1 , . . . , ε i ) J β ( ε i + 1 , . . . , ε N )    3 i = 1   N − 2 � N − 1 �   V ναβγ + J α ( ε 1 , . . . , ε i ) J β ( ε i + 1 , . . . , ε j ) J γ ( ε j + 1 , . . . , ε N )   4  i = 1 j = i + 1 This result is consistent with Lipatov’s effective action. 8

  10. Unintegrated Gluon Densities • in the high-energy factorization orginally BFKL gluon evolution was used ⇒ why not to try to include more subtle effects relevant to small x? • nonlinear evolution with saturation 1 � �   � x � � x � k 2  � x �     q 2 z , q 2 θ T z − q 2 − k 2 z , k 2  � 1 � ∞  T F T F   k 2 z , k 2  � � � � dq 2  T T T T F  + α s N c dz   T x , k 2 x , k 2 T F = F 0 � � +  �   � �  T T   π z q 2 � q 2 T − k 2 k 2  �    x 4 q 4 T + k 4   T  T  T 0 T  � � 1 � � � k 2  � x � � x    + α s P gg ( z ) − 2 N c   T dq 2 z , q 2 z , k 2 dz T F + zP gq ( z ) Σ     T T 2 π k 2   z k 2 x T T 0    �    � ∞ � � ∞  2     dq 2 � � dq 2 q 2 � � − 2 α 2                 s T x , q 2 x , k 2 T T x , q 2   + F     F  ln   F       T T T  R 2 q 2 q 2 k 2  k 2 k 2  T T T T T → includes kinematic constraints → includes nonsingular pieces of the splitting functions → the parameter R has an interpretation of a target radius ⇒ one may attempt to use it for nuclei 2 • warning: at large densities factorization issue is much more complicated (CGC) 3 1 K. Kutak, J. Kwiecinski, Eur.Phys.J. C29, 521 (2003); K. Kutak, A. Stasto, Eur.Phys.J. C41, 343 (2005) 2 K. Kutak, S. Sapeta, Phys.Rev. D86, 094043 (2012) 3 F. Dominguez, C. Marquet, B. Xiao, Feng Yuan, Phys.Rev. D83 (2011) 105005 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend