secondary electron interference from trigonal warping in
play

Secondary electron interference from trigonal warping in clean - PowerPoint PPT Presentation

Secondary electron interference from trigonal warping in clean carbon nanotubes A. Dirnaichner et al. , PRL 117 , 166804 (2016) Dr. Andreas K. H uttel Institute for Experimental and Applied Physics University of Regensburg 28th International


  1. Secondary electron interference from trigonal warping in clean carbon nanotubes A. Dirnaichner et al. , PRL 117 , 166804 (2016) Dr. Andreas K. H¨ uttel Institute for Experimental and Applied Physics University of Regensburg 28th International Conference on Low Temperature Physics, G¨ oteborg

  2. overgrown, “ultraclean” carbon nanotube device Ti/Pt CNT SiO 2 • CNT growth in situ over p Si + gate Ti/Pt electrodes • V g � 0 − → hole conduction • no Coulomb blockade 5 • transparent contacts, weak scattering A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  3. a carbon nanotube as Fabry-P´ erot interferometer "semitransparent "semitransparent mirror" mirror" weakly scattered electron wave • strong coupling of nanotube and contacts, no charge quantization • weak scattering − → Fabry-P´ erot interferometer for electrons A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  4. the initial observation W. Liang et al. , Nature 411, 665 (2001) • large conductance, oscillating in gate voltage V g , bias voltage V sd • fixed interferometer geometry; we tune the electron wave vector • dominant frequency corresponds to distance between contacts

  5. our data — much larger energy range ∆ E ≃ 0 . 4eV • narrow oscillation ( ↔ interferometer length) • frequency doubling / beat • slow modulation of the averaged conductance − → nanotube is not just a one-channel system; valley degeneracy, dispersion relation! A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  6. our data — much larger energy range ∆ E ≃ 0 . 4eV • narrow oscillation ( ↔ interferometer length) • frequency doubling / beat • slow modulation of the averaged conductance − → nanotube is not just a one-channel system; valley degeneracy, dispersion relation! A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  7. our data — much larger energy range ∆ E ≃ 0 . 4eV • narrow oscillation ( ↔ interferometer length) • frequency doubling / beat • slow modulation of the averaged conductance − → nanotube is not just a one-channel system; valley degeneracy, dispersion relation! A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  8. f -8 -6 -2 -10 -12 -14 impurity scattering? no! • discrete Fourier transform of interference pattern (apply sliding window to G ( V g ) , plot transform as function of window position) • only one fundamental frequency and its harmonics − → no impurities that subdivide the nanotube − → interference effects must be due to intrinsic nanotube structure • from decay of harmonics, extract mean path of electrons − → ℓ = 2 . 7µm ≃ 2 . 7 L A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  9. structure of single wall carbon nanotubes armchair armchair (n,n) T zigzag a 2 (4,2) a 1 C � chiral zigzag (0,0) (n,0) • typically, classification into armchair, zigzag, chiral • chiral nanotubes can be further subdivided into armchair-like, zigzag-like A. M. Lunde et al., PRB 71, 125408 (2005), M. Marga´ nska et al., PRB 92, 075433 (2015) • let’s discuss the interferometer behaviour of these four groups • band structure & symmetry, real-space tight binding calculations A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  10. interference in a zigzag nanotube ε a ε b k a,l k a,r k b,l k b,r k || k || a a b b 0 0 zig zag (12,0) 4 T 0 ε 0.22 (eV) 0.16 0.10 zigzag ( θ = 0 ◦ , (n,0)): • Dirac cones around k ⊥ = ± K ⊥ , k � = 0 • angular momentum conservation − → only backscattering within cone • two channels, identical accumulated phase − → looks like one channel A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  11. interference in a zigzag-like nanotube κ > κ < ε a k a,l k a,r k b,l k b,r k || k || 0 0 a a b b zig zag like (6,3) 4 T 0 ε 0.22 (eV) 0.16 0.10 zigzag-like (0 ◦ < θ < 30 ◦ , n − m 3gcd ( n , m ) / ∈ Z ): • asymmetric Dirac cones around k ⊥ = ± K ⊥ , k � = 0 • angular momentum conservation − → only backscattering within cone • two channels, identical accumulated phase − → looks like one channel A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  12. interference in an armchair nanotube κ > κ < ε k a,r k a,l k b,l k b,r 0 k || b a a b armchair (7,7) 4 T 0 ε 0.22 0.16 0.10 (eV) armchair ( θ = 30 ◦ , (n,n)): • Dirac cones at k ⊥ = 0, k � = ± K � • parity symmetry − → only backscattering within a / b branch • two channels, different accumulated phase, beat; T constant A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  13. interference in an armchair-like nanotube κ > κ < ε k a,r k a,l k b,r k b,l 0 k || b a a b E n 4 armchair like (10,4) T 0 ε 0.22 (eV) 0.16 0.10 armchair-like (0 ◦ < θ < 30 ◦ , n − m 3gcd ( n , m ) ∈ Z ): • Dirac cones at k ⊥ = 0, k � = ± K � • NO parity − → two channels, different phase, mixing of channels • beat plus slow modulation of T A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  14. meaning of the average conductance maxima • armchair-like CNT: phase difference of Kramers modes � � ∆ φ θ ( E ) = | φ θ a ( E ) − φ θ κ θ > − κ θ b ( E ) | = 2 L < >,< : longitudinal wave vectors measured from K / K ′ points κ θ • averaged conductance has maximum when ∆ φ θ ( E ) = 2 π n • relevant parameter: chiral angle θ − → use this for chiral angle determination! • extract from data maxima positions V n g of G ( V g ) • convert V n g from gate voltage to energy • compare with calculated maxima positions for given θ A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  15. chiral angle determination 10 30° 22° 8 15° 6 9° 4 2 4° 1° 0 0.0 0.1 0.2 0.3 0.4 E (eV) result for our device: 22 ◦ ≤ θ < 30 ◦ solution of a hard problem — chirality determination from transport A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  16. error sources mainly: conversion of G maxima positions from gate voltage to energy • band gap at V g > 0, energy offset ∆ E • lever arm α ( V g ) hard to determine, varies strongly close to band gap → 55meV < ∆ E < 60meV → error bars A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  17. contact area: rotational symmetry broken broken rotational symmetry at contacts • at contacts, rotational symmetry broken − → argument for angular momentum conservation breaks down • integrate this into tight-binding model: differing on-site energies for top and bottom of nanotube • result: slow oscillations of G also recovered for zigzag-like nanotube! • same evaluation of the chiral angle possible! A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  18. conclusions • complex Fabry-P´ erot interference observed over a large energy range • theoretical analysis for different nanotube types, confirmed by real-space tight binding calculations • interference pattern is due to trigonal warping of dispersion relation and mixing of Kramers channels • slow modulation of averaged conductance G — robust, easily extracted • G depends on chiral angle θ of the nanotube • approach towards a hard problem — chirality determination from low-temperature transport A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  19. Thanks Alois Dirnaichner Miriam del Valle Karl G¨ otz Felix Schupp Nicola Paradiso Milena Grifoni Christoph Strunk A. Dirnaichner et al. , PRL 117 , 166804 (2016)

  20. Thank you! — Questions? 10 30° 22° 8 15° 6 4 9° 2 4° 1° 0 0.0 0.1 0.2 0.3 0.4 E (eV) A. Dirnaichner et al. , PRL 117 , 166804 (2016)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend