search of axions from a nuclear power reactor with a high
play

Search of axions from a nuclear power reactor with a high-purity - PowerPoint PPT Presentation

Search of axions from a nuclear power reactor with a high-purity germanium detector Hsi-Ming Chang Department of Physics, National Taiwan University Institute of Physics, Academia Sinica TEXONO Collaboration TAUP 2007 Sep. 11, 2007 @ Sendai


  1. Search of axions from a nuclear power reactor with a high-purity germanium detector Hsi-Ming Chang Department of Physics, National Taiwan University Institute of Physics, Academia Sinica TEXONO Collaboration TAUP 2007 Sep. 11, 2007 @ Sendai 1 / 14

  2. Outline Introduction to Axions Outline ■ Axion Production & Detection ■ Data analysis ■ Physics Results ■ This work is published in PRD 75, 052004 (2007), a by-product of Taiwan EXperiment On NeutrinO. 2 / 14

  3. Introduction to Axion Strong CP Problem: Introduction to ■ Axion Neutron EDM < 10 − 25 e cm, Why QCD does not seem to break the CP-symmetry? PQWW Axion ( m a � 100 keV): ■ ◆ A hypothetical particle to solve stong CP problem. ◆ Excluded after extensive searches. Invisible Axion: ■ ◆ Evade previous experimental searches. Mass window 10 − 6 � m a � 10 − 2 (eV), ◆ from cosmological and astrophysical arguments. ◆ Popular models: DFSZ, KSVZ. 3 / 14

  4. Reactor as Source ■ Axion Production & Axions could be emitted via magnetic transition. Detection ■ Inspired by F. T. Avignone III et al. , PRD37, 618 (1988). Reactor as Source ⇒ Radioactive 65 Zn source & HPGe detector. Branching Ratio Γ a / Γ γ ■ Reactor is the most powerful radioactive source we can control! Complications Reactor Building ◆ Slow neuton capture: n + ( Z, A ) → ( Z, A + 1) + γ ( or axion ) . Detector & Shielding Nuclear de-excitation: ( Z, A ) ∗ → ( Z, A ) + γ ( or axion ) . ◆ Axion Detection Event Rate Formula ■ The photon fluxes φ γ at detector: Energy Mode φ γ ( 10 10 cm − 1 s − 1 ) (keV) np → d γ 2230 Isovector M1 22.1 7 Li ∗ 478 M1 24.7 91 Y ∗ 555 M4 2.10 97 Nb ∗ 743 M4 4.81 135 Xe ∗ 526 M4 0.85 137 Ba ∗ 662 M4 0.37 Γ a ■ Axion flux is φ a = φ γ Γ γ . eV ) 2 cm − 2 sec − 1 , with average energy ∼ 4 keV. Solar axion flux ∼ 10 12 ( m a ■ 4 / 14

  5. Reactor as Source ■ Axion Production & Axions could be emitted via magnetic transition. Detection ■ Inspired by F. T. Avignone III et al. , PRD37, 618 (1988). Reactor as Source ⇒ Radioactive 65 Zn source & HPGe detector. Branching Ratio Γ a / Γ γ ■ Reactor is the most powerful radioactive source we can control! Complications Reactor Building ◆ Slow neuton capture: n + ( Z, A ) → ( Z, A + 1) + γ ( or axion ) . Detector & Shielding Nuclear de-excitation: ( Z, A ) ∗ → ( Z, A ) + γ ( or axion ) . ◆ Axion Detection Event Rate Formula ■ The photon fluxes φ γ at detector: Energy Mode φ γ Kinematics Constraint! ( 10 10 cm − 1 s − 1 ) (keV) np → d γ 2230 Isovector M1 22.1 7 Li ∗ 478 M1 24.7 91 Y ∗ 555 M4 2.10 97 Nb ∗ 743 M4 4.81 135 Xe ∗ 526 M4 0.85 137 Ba ∗ 662 M4 0.37 Γ a ■ Axion flux is φ a = φ γ Γ γ . eV ) 2 cm − 2 sec − 1 , with average energy ∼ 4 keV. Solar axion flux ∼ 10 12 ( m a ■ 4 / 14

  6. Branching Ratio Γ a / Γ γ Complications The axion-to-photon branching ratio for M1 transition is: Axion Production & Detection Reactor as Source « 2 g 0 aNN β + g 1 „ Γ a 1 1 1 + δ 2 ( p a Branching Ratio ǫ a ) 3 aNN Γ γ = . Γ a / Γ γ ( µ 0 − 1 2 πα 2 ) β + ( µ 1 − η ) Complications Reactor Building δ : E2/M1 mixing ratio ≈ 0 . Detector & Shielding µ 0 ( µ 1 ): Isoscalar (isovector) magnetic moment = 0 . 88 (4 . 71) . Axion Detection Event Rate Formula η, β : Matrix elements from nuclear physics. ■ Numerical calculations of η and β are needed. Even if η and β are known, two free parameters g 0 aNN and g 1 ■ aNN still remain. How to circumvent the complications? ■ It happens that np → d γ is an isovetor M1 transition: ǫ a ) 3 ( g 1 „ Γ a « ≡ Γ a 1 2 πα ( p a aNN ) 2 . ) 2 ∝ ( g 1 aNN Γ γ ( np → dγ ) ≈ Γ γ µ 1 np ■ In analysis, g aNN can be parametrized as a function of m a with axion models. 5 / 14

  7. Reactor Building Axion Production & Detection Reactor as Source Branching Ratio Γ a / Γ γ Complications Reactor Building Detector & Shielding Axion Detection Event Rate Formula Power: 2.9 GW. Data Size: ■ ■ ν e flux: ■ ON: 459.0 days. • 6 × 10 12 cm − 2 · s − 1 . OFF: 96.3 days. • 30 mwe overburden. ■ in two ON/OFF periods. 6 / 14

  8. Detector & Shielding Outer Shielding: Axion Production & Detection Reactor as Source 1. Plastic scintillator: cosmic-ray Branching Ratio veto. Γ a / Γ γ Complications 2. Lead: block γ ’s from outside. Reactor Building 3. Stainless steel: support the Detector & Shielding structure. Axion Detection Event Rate Formula 4. B-loaded polyethylene: neutron capturer. 5. OFHC copper: reduce the γ ’s from lead or polyethylene. HPGe detector: Mass: 1 kg. ■ Threshold: 5 keV. ■ CsI and NaI: anti-Compton ■ system. 28m from reactor core. ■ 7 / 14

  9. Axion Detection Axion Production & g a ΓΓ � 1 GeV � 1 Detection γ Reactor as Source 2 g aee � 1 Branching Ratio Γ a / Γ γ 2 � Σ � 10 � 22 cm 1.5 Complications Ge a Reactor Building Detector & Shielding 1 Compton Axion Detection Primakoff conversion ( g aγγ ) Primakoff � � 10 4 � Event Rate Formula 0.5 500 1000 1500 2000 m a � keV � γ γ σ Pri = g 2 aγγ · f ( m a , ǫ a ) ■ + a ⇒ sensitive at low m a a e e σ Com = g 2 aee · f ( m a , ǫ a ) ■ Compton conversion ( g aee ) ⇒ sensitive at high m a (Here ǫ a = 2230 keV) 8 / 14

  10. Event Rate Formula The event rate in unit of day − 1 kg − 1 is Axion Production & Detection Reactor as Source Branching Ratio Γ a � � Γ a / Γ γ R = σ φ γ · P decay · P matter Nǫ , Complications Γ γ Reactor Building Detector & Shielding P decay : Survival probability without decay. Axion Detection Event Rate Formula P matter : Survival probability without interaction. N : # of Ge atoms in kilogram target. ǫ : Efficiency of full-energy deposition at detector. R = R ( m a , g aγγ/aee , g aNN ) . Invoking the widely-used DFSZ model ( g aNN ∝ m a ) to reduce free parameter: R ∝ g 2 aγγ/aee m 2 a . 9 / 14

  11. Energy Spectra Data Analysis Energy Spectra ON-OFF Residual 40 K counts/day-kg-keV Results 214 Pb 208 Tl 226 Ra 228 Ac ON 10 208 Tl 1 -1 10 -2 10 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 (a) keV counts/day-kg-keV OFF 10 1 -1 10 -2 10 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 (b) keV 10 / 14

  12. ON-OFF Residual —: overlaid best-fit Gaussians Data Analysis 0.6 0.6 0.6 Energy Spectra Events / (day-kg-keV) ON-OFF Residual 0.4 0.4 0.4 Results 0.2 0.2 0.2 0 0 0 -0.2 -0.2 -0.2 -0.4 -0.4 -0.4 -0.6 -0.6 -0.6 460 480 500 520 540 540 560 Energy (keV) Energy (keV) Energy (keV) 0.6 0.6 0.08 Events / (day-kg-keV) 0.06 0.4 0.4 0.04 0.2 0.2 0.02 0 0 0 -0.02 -0.2 -0.2 -0.04 -0.4 -0.4 -0.06 -0.6 -0.6 -0.08 640 660 680 720 740 760 2200 2250 Energy (keV) Energy (keV) Energy (keV) 11 / 14

  13. Results Statistical results: Data Analysis 1 Energy Spectra ON-OFF Residual Results Energy Period A Period B (day − 1 kg − 1 ) (day − 1 kg − 1 ) (keV) 0.5 478 -0.88 ± 0.75 0.14 ± 0.41 counts � day � 1 � kg � 1 526 0.26 ± 0.67 0.38 ± 0.16 555 -0.47 ± 0.67 -0.33 ± 0.15 662 -0.46 ± 0.62 -0.02 ± 0.50 0 743 0.14 ± 0.55 0.22 ± 0.37 2230 -0.10 ± 0.17 -0.03 ± 0.03 -0.5 Energy P-A&P-B Combined Upper Bound (day − 1 kg − 1 ) (day − 1 kg − 1 ) (keV) 478 -0.09 ± 0.36 0.49 526 0.37 ± 0.15 0.62 555 -0.34 ± 0.15 0.05 -1 662 -0.19 ± 0.39 0.46 np � d Γ 7 Li 91 Y 97 Nb 135 Xe 137 Ba 743 0.19 ± 0.31 0.69 2230 -0.04 ± 0.03 0.02 P � A & P � B combined Systematics Uncertainty: < 20%, dominated by evaluation of φ γ from np → d γ . 12 / 14

  14. m a − g a Space Physics Results m a − g a Space 10 0 10 0 10 2 10 2 R Summary Int Int Beam PQWW Dump 10 0 10 0 Decay TEXONO 10 � 2 10 � 2 Positronium Zn Macro � PQWW Laser scopic Decay Zn Decay TEXONO 10 � 2 10 � 2 Force Experiments 10 � 4 10 � 4 Beam 10 � 4 10 � 4 Dump Kine 10 � 6 10 � 6 g a ΓΓ � GeV � 1 � g a ΓΓ � GeV � 1 � 10 � 6 10 � 6 R g aee g aee Kine Solar � Germanium 10 � 8 10 � 8 10 � 8 10 � 8 HW HW CAST HB Stars 10 � 10 10 � 10 10 � 10 10 � 10 Microwave Telescope Cavity KSVZ 10 � 12 10 � 12 10 � 12 10 � 12 Red Giant DFSZ 10 � 14 10 � 14 10 � 14 10 � 14 DFSZ 10 � 16 10 � 16 10 � 8 10 � 6 10 � 4 10 � 2 10 � 8 10 � 6 10 � 4 10 � 2 10 0 10 0 10 2 10 2 10 4 10 4 10 6 10 6 10 8 10 8 10 � 8 10 � 8 10 � 6 10 � 6 10 � 4 10 � 4 10 � 2 10 � 2 10 0 10 0 10 2 10 2 10 4 10 4 10 6 10 6 10 8 10 8 m a � eV � m a � eV � m a � eV � m a � eV � 13 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend