search for di higgs to 4b with the atlas detector
play

Search for di-Higgs to 4b with the ATLAS detector 2016 Public (13 fb - PowerPoint PPT Presentation

Search for di-Higgs to 4b with the ATLAS detector 2016 Public (13 fb -1 ) and 2017 Expected (24/36 fb -1 ) Results Tony(Baojia)Tong, Harvard University DPF, Aug.2, 2016 Motivation Di-Higgs production A Beyond Standard Model Standard


  1. Search for di-Higgs to 4b with the ATLAS detector 2016 Public (13 fb -1 ) and 2017 Expected (24/36 fb -1 ) Results Tony(Baojia)Tong, Harvard University DPF, Aug.2, 2016

  2. Motivation Di-Higgs production • A “Beyond Standard Model” Standard Model process • Cross section small in SM: • 8 TeV ~ 10 fb (NNLO) • 13 TeV ~ 34 fb (NNLO + NNLL) D.Florian,J.Mazzitelli, Arxiv1505.07122 Tony Tong (Harvard) 2 Aug 2, 2017

  3. Motivation Di-Higgs production • Cross section small in SM: • 8 TeV ~ 10 fb • 13 TeV ~ 34 fb • Larger if BSM physics exists • Non-resonant Examples • tth vertex modifications • λ hhh triple-Higgs coupling • Resonant Examples • KK Graviton • Heavy Higgs: 2HDM Tony Tong (Harvard) 3 Aug 2, 2017

  4. Motivation Di-Higgs production • Cross section small in SM: • 8 TeV ~ 10 fb • 13 TeV ~ 34 fb • Larger if BSM physics exists • Non-resonant Examples • tthh, tth vertex modifications • λ hhh triple-Higgs coupling h • Resonant Examples (G/H) • KK Graviton, spin 2 • Heavy Higgs: 2HDM, spin 0 h Tony Tong (Harvard) 4 Aug 2, 2017

  5. Motivation Di-Higgs decay b larger branching ratio—higher yield h - b b single Higgs h decay 2e-3 - b single Higgs decay Tony Tong (Harvard) 5 Aug 2, 2017

  6. Motivation Di-Higgs decay larger branching ratio—higher yield single Higgs decay 2e-3 Phys. Rev. D 92, 092004 (2015) 4b better limit for higher mass single Higgs decay Tony Tong (Harvard) 6 Aug 2, 2017

  7. RunII 4b: object definition Channels: Resolved ATLAS-CONF-2016-049 • Standard resolved 4b jets for the low mass range Tony Tong (Harvard) 7 Aug 2, 2017

  8. RunII 4b: object definition Channels: Resolved + Boosted ATLAS-CONF-2016-049 • Standard resolved 4b jets for the low mass range • 1.5 TeV resonance → ~ 600 GeV p T Higgs → Δ R bb ~2m h /p T ~ 0.4 trackjet Tony Tong (Harvard) 8 Aug 2, 2017

  9. RunII 4b: object definition Channels: Resolved + Boosted ATLAS-CONF-2016-049 • Standard resolved 4b jets for the low mass range • 1.5 TeV resonance → ~ 600 GeV p T Higgs → Δ R bb ~2m h /p T ~ 0.4 Objects/ Resolved Boosted Final State (250–1100 GeV) (1100-3000 GeV) Trigger Mixed b Trigger Large R-jet Trigger Two 1.0 trimmed Four 0.4 Anti-kt Jets Jets Anti-kt Jets Leading > 450 GeV pT cuts Jet pT > 40 GeV Subleading > 250 GeV B-tagging 70% on Jets 77% on R= 0.2 trk jets Tony Tong (Harvard) 9 Aug 2, 2017

  10. RunII 4b: resolved selection Resolved: Jets Pairing and Cuts ATLAS-CONF-2016-049 • Select hh pair that has the minimal distance to a diagonal line on the 2D mass plane • Minimize the Higgs candidates mass difference which pair? Tony Tong (Harvard) 10 Aug 2, 2017

  11. RunII 4b: resolved selection Resolved: Jets Pairing and Cuts ATLAS-CONF-2016-049 • Select hh pair that has the minimal distance 0.08 Efficiency 0.2 ATLAS Preliminary 4 b-tagged jets to a diagonal line on -1 s = 13 TeV, 2016, 10.1 fb 0.07 0.18 R ∆ jj Resolved m Dependent Cuts, R ∆ the 2D mass plane 4j hh 0.16 0.06 × X Acceptance hh 0.14 • m 4j dependent Trigger 0.05 0.12 requirements on h pT, 0.04 0.1 eta, and dR jj 0.08 0.03 0.06 • Fine signal efficiency 0.02 0.04 across large mass 0.01 0.02 ranges 0 0 300 400 500 600 700 800 900 1000 1100 1200 SMNR m [GeV] G* non-res KK Tony Tong (Harvard) 11 Aug 2, 2017

  12. RunII 4b: boosted selection Boosted: Number of b-tagging • Three Signal Regions: b b • 4b • 3b: (recover b b efficiency) • 2b split (merging of trackjets) Tony Tong (Harvard) 12 Aug 2, 2017

  13. RunII 4b: boosted selection Boosted: Number of b-tagging • Three Signal Regions: Acceptance x Efficiency b b ATLAS Internal 2 b-tagged track-jets ATLAS work in s 0.35 3 b-tagged track-jets progress G c=1.0, s = 13 TeV • 4b 4 b-tagged track-jets Boosted 0.3 All of above 0.25 • 3b: (recover b b 0.2 efficiency) 0.15 0.1 • 2b split 0.05 (merging of 0 1000 1500 2000 2500 3000 trackjets) Mass [GeV] Tony Tong (Harvard) 13 Aug 2, 2017

  14. RunII 4b: object definition Regions: Two Higgs Mass Plane ATLAS-CONF-2016-049 Boosted 2Tag Background Prediction 250 [GeV] • Signal Region (SR): ATLAS Preliminary 200 -1 s =13 TeV, 13.3 fb subl • “Circle” centered at h mass Boosted J 200 m 150 • Validation Region (VR) : • Ring outside SR (for validation) 150 100 • Sideband (SB) SR 100 50 VR • Ring outside VR (for modeling) SB 50 0 50 100 150 200 250 lead m [GeV] J Tony Tong (Harvard) 14 Aug 2, 2017

  15. RunII 4b: object definition Regions: Two Higgs Mass Plane ATLAS-CONF-2016-049 Boosted 2Tag Background Prediction 250 [GeV] • Signal Region (SR): ATLAS Preliminary 200 -1 s =13 TeV, 13.3 fb subl • “Circle” centered at h mass Boosted J 200 m 150 • Validation Region (VR): • Ring outside SR (for validation) 150 100 • Sideband (SB) SR 100 50 VR • Ring outside VR (for modeling) SB 50 0 50 100 150 200 250 lead m [GeV] J Tony Tong (Harvard) 15 Aug 2, 2017

  16. RunII 4b: object definition Regions: Two Higgs Mass Plane ATLAS-CONF-2016-049 Boosted 2Tag Background Prediction 250 [GeV] • Signal Region (SR): ATLAS Preliminary 200 -1 s =13 TeV, 13.3 fb subl • “Circle” centered at h mass Boosted J 200 m 150 • Validation Region (VR): • Ring outside SR (for validation) 150 100 • Sideband Region (SB): SR 100 50 VR • Ring outside VR (for modeling) SB 50 0 50 100 150 200 250 lead m [GeV] J Tony Tong (Harvard) 16 Aug 2, 2017

  17. RunII 4b: background estimation Background ATLAS-CONF-2016-049 Boosted 2Tag Background Prediction • Background: 250 [GeV] ATLAS Preliminary 200 -1 • 90-85% qcd—data driven s =13 TeV, 13.3 fb subl Boosted J 200 m 150 • 10-15% ttbar—MC 150 100 • use lower-b-tag low-signal yield SR 100 50 VR region to model higher-b-tag regions SB • derive the normalization factor from 50 0 50 100 150 200 250 the Sideband, check in Validation lead m [GeV] J Tony Tong (Harvard) 17 Aug 2, 2017

  18. RunII 4b: background estimation ATLAS-CONF-2016-049 Background • Background: 4b SR • 90-85% qcd—data driven VR SB • 10-15% ttbar—MC N 4b SR/VR ??? • Need shape and normalization estimates for qcd events • derive the normalization factor from the Sideband, check in Validation Tony Tong (Harvard) 18 Aug 2, 2017

  19. RunII 4b: background estimation ATLAS-CONF-2016-049 Background • Background: 4b SR • 90-85% qcd—data driven VR SB • 10-15% ttbar—MC N 4b SR/VR ~ N 0b SR/VR • use lower-b-tag low-signal yield region to model higher-b-tag regions 0b SR • derive the normalization factor from VR the Sideband, check in Validation SB Tony Tong (Harvard) 19 Aug 2, 2017

  20. RunII 4b: background estimation ATLAS-CONF-2016-049 Background • Background: 4b SR • 90-85% qcd—data driven VR SB • 10-15% ttbar—MC N 4b SR/VR = N 4b SB / N 0b SB * N 0b SR/VR • use lower-b-tag low-signal yield region to model higher-b-tag regions 0b SR • derive the normalization factor from VR the Sideband, check in Validation SB Tony Tong (Harvard) 20 Aug 2, 2017

  21. RunII 4b: resolved results Signal Region: Resolved ATLAS-CONF-2016-049 • Final discriminant: m4j , four jets’s invariant mass ; no significant excess observed Data 2015 2016 Obs 1231 3990 Exp 1189 ± 76 3860 ± 230 Events/10 GeV Events/10 GeV 3 10 ATLAS Preliminary Data ATLAS Preliminary Data Multijet -1 s = 13 TeV, 2016, 10.1 fb Multijet -1 t t s = 13 TeV, 2015, 3.2 fb 2 Signal Region: Resolved 10 t t G(300) 10 × Signal Region: Resolved G(300) 10 × 2 10 G(800) 10 × G(800) 10 × SM hh 500 × SM hh 500 × Stat+Syst Uncertainty 10 Stat+Syst Uncertainty 2015 2016 10 1 1 1 − 10 − 1 10 2 Data/Bkgd 2 Data/Bkgd 1 1 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 m [GeV] 4j m [GeV] *2015 and 2016 have different trigger selection due to different run conditions 4j Tony Tong (Harvard) 21 Aug 2, 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend