sdps with rank constraint grothendieck inequalities
play

SDPs with rank constraint & Grothendieck inequalities Frank - PowerPoint PPT Presentation

SDPs with rank constraint & Grothendieck inequalities Frank Vallentin (TU Delft, CWI Amsterdam) Jop Brit (CWI Amsterdam) Fernando de Oliveira Filho (U Tilburg) 15th Workshop on Combinatorial optimization January 13, 2010 Overview 1. The


  1. SDPs with rank constraint & Grothendieck inequalities Frank Vallentin (TU Delft, CWI Amsterdam) Jop Briët (CWI Amsterdam) Fernando de Oliveira Filho (U Tilburg) 15th Workshop on Combinatorial optimization January 13, 2010

  2. Overview 1. The problem 2. SDP relaxation 3. Approximation algorithm http://arxiv.org/abs/0910.5765 http://arxiv.org/abs/1011.1754

  3. 1. The problem image credit: Sturmfels, Uhler

  4. interaction graph G = ( V, E ) symmetric matrix A : V × V → R � � � A ( u, v ) f ( u ) · f ( v ) : f : V → S r − 1 SDP r ( G, A ) = max { u,v }∈ E S r − 1 = { x ∈ R r : x · x = 1 } graphical Grothendieck problem with rank- r constraint

  5. � � � A ( u, v ) f ( u ) · f ( v ) : f : V → S r − 1 SDP r ( G, A ) = max { u,v }∈ E = 1 2 max {� A, X � : X ∈ elliptope, rank X ≤ r } linear optimization over elliptope with rank constraint � � X ∈ S n ≥ 0 : X 11 = . . . = X nn = 1

  6. r = 1 S 0 = {− 1 , +1 } � 0 � �� L G MAX CUT ( G ) = SDP 1 K n,n , 0 L G L G Laplacian matrix of G

  7. r -vector spin glass model interaction graph G = ( V, E ) atoms bonds symmetric matrix A : V × V → R A ( u, v ) > 0 for ferromagnetic interaction A ( u, v ) < 0 for antiferromagnetic interaction A ( u, v ) = 0 if { u, v } �∈ E , no interaction minimize energy: � A ( u, v ) f ( u ) · f ( v ) − { u,v }∈ E spins f : V → S r − 1

  8. Hardness results NP-hard: Approximate MAX CUT within factor 16 / 17 = 0 . 94 . . . (H˚ astad (2001)) Unique games hard: Approximate MAX CUT within 0 . 87 . . . (Kindler, Khot, Mossel, O’Donnell (2007)) Unique games hard: Approximate SDP r ( K n , A ) within Θ(1 − 1 r ) (BOV (2009))

  9. Natural SDP relaxation Drop rank constraint! (set r = ∞ ) Quality measured by dimensionality gap : Smallest constant K ( r, G ) with ∀ A : SDP ∞ ( G, A ) ≤ K ( r, G ) SDP r ( G, A ) Grothendieck inequality

  10. 2. SDP relaxation

  11. Why Grothendieck? Grothendieck (1953) showed: K (1 , K n,n ) < C ( C independent of n , best possible C unknown until today) context: metric theory of tensor products

  12. More propaganda Grothendieck inequalities are unifying & have many applications: • combinatorics: cut norms, graph limits, Szem´ eredi partitions (Alon-Naor (2006), Lov´ asz-Sz´ egey (2007) • machine learning: kernel clustering (Khot-Naor (2008)) • system theory: matrix cube theorem (Ben-Tal, Nemirovski (2003)) • quantum information theory: XOR games (Bri¨ et, Buhrman, Toner (2009)) • numerical linear algebra: column subset selection (Tropp (2009))

  13. 3. Approximation algorithm

  14. Approximation algorithm 1. Solve SDP ∞ ( G, A ) , obtaining optimal solution f : V → S | V |− 1 . 2. Use f to construct g : V → S | V |− 1 according to Lemma 1.2. 3. Choose Z = ( Z ij ) ∈ R r ×| V | at random, Z ij ∼ N (0 , 1) . 4. Set h ( u ) = Zg ( u ) / � Zg ( u ) � .

  15. Results: Upper bounds for K ( r, G ) bipartite G tripartite G r 1 . 782213 . . . 3 . 264251 . . . 1 1 . 404909 . . . 2 . 621596 . . . 2 1 . 280812 . . . 2 . 412700 . . . 3 1 . 216786 . . . 2 . 309224 . . . 4 1 . 177179 . . . 2 . 247399 . . . 5 Krivine (1979): Bound for bipartite K (1 , G ) Haagerup (1987): Bound for bipartite K (2 , G )

  16. Crucial integral if r = 1 � Zu � = 2 Zv � Zu � · π arcsin( u · v ) E � Zv � crucial in analysis of Goemans-Williamson Z ∈ R r ×| V | if r > 1 : � Zu � 2 � Zv 2 � Γ(( r + 1) / 2) � Zu � · E = � Zv � r Γ( r/ 2) ∞ (1 · 3 · · · (2 k − 1)) 2 � (2 · 4 · · · 2 k )(( r + 2) · ( r + 4) · · · ( r + 2 k ))( u · v ) 2 k +1 · k =0

  17. set up notation

  18. write down integral hypergeometric functions spherical coordinates some tricks substitutions, integration by part done

  19. Conclusion 1. Grothendieck inequalities measure dimensionality gaps 2. Upper bounds for dimensionality gap give Goemans-Williamson-style approximation algorithms 3. Exact analysis involved because of complicated integrals 4. Unique games conjecture = Can we go beyound these SDP relaxations? http://arxiv.org/abs/0910.5765 Details? http://arxiv.org/abs/1011.1754

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend