science with synthetic stellar surveys
play

Science with synthetic stellar surveys Robyn Sanderson Caltech - PowerPoint PPT Presentation

Science with synthetic stellar surveys Robyn Sanderson Caltech UPenn/Flatiron CCA OMG Im on Twitter!? @astrorobyn Synthetic survey of a cosmo-hydro simulation (Sanderson et al 2018) Science with synthetic stellar surveys Robyn


  1. Science with 
 synthetic stellar surveys Robyn Sanderson Caltech ➤ UPenn/Flatiron CCA OMG I’m on Twitter!? @astrorobyn

  2. Synthetic survey of a cosmo-hydro simulation (Sanderson et al 2018) Science with 
 synthetic stellar surveys Robyn Sanderson Caltech ➤ UPenn/Flatiron CCA Milky Way (image credit:ESO) OMG I’m on Twitter!? @astrorobyn

  3. N$ PAndAS$M31$Map$ The Milky Way (McConnachie$et$al.)$ N147$ N185$ E$ (and M31) in 2018 35 kpc (MSTO stars, Sesar+2011) 85 kpc 30$kpc$ 60$kpc$ 90$kpc$ 150$kpc$ M31$ (F stars, Pila-Diéz+2015) 150 kpc (SEGUE K giants, Xue +2014; Giant$Southern$ PanSTARRS RR Lyr, Sesar+2017) Stream$ M31$dSphs$ 300 kpc M31$Halo$Fields$ (Rvir?) M33$ Dwarf$Galaxy$Fields$ 274 kpc image courtesy Karoline Gilbert (Most distant M giant, Bochanski, Willman, Caldwell, RES+2014)

  4. The next decade will see a Galactic renaissance 1 1 E. Kirby, 2017 2017 2018 2019 2020 2021 2022 2023 2024 2025 LSST By 2028, we will have 6+D information Gaia Ext for stars to the MW’s Euclid WFIRST virial radius and beyond (~300 kpc)… Subaru PFS 4MOST ..and resolved stellar DESI maps of the ~100 nearest WEAVE MW-like galaxies SDSS-V GMT Astrometric + spectroscopic Spectroscopic: <4-m class Photometric + astrometric Spectroscopic: >4-m class TMT

  5. The Milky Way in M giants, RRLe 2028 LSST coadded depth MSTO stars (m=26.7) 5 Mpc 300 kpc (=Rvir?) 150 kpc (extent of current samples) BHB stars Latte (m21i), Wetzel et al. 2016

  6. The Milky Way in 2028: spectroscopy Effective temperature (K) 30 000 10 000 7000 6000 4000 –10 Limiting distance –8 Supergiants ( I ) AGB –6 1 Mpc 10 M ☉ star –4 Helium Absolute magnitud ( V –band) flash –2 5 M ☉ star 100 kpc 0 Giants ( II , III ) 10 kpc HB M a i n 2 s RGB e q u e n c e 4 10 kpc ( V ) 1 kpc Sun 6 8 1 kpc RGB - Red Giant Branch White dwarfs (WD) 10 100 pc HB - Horizontal Branch Gaia AGB - Asymptotic Giant Branch 12 14 100 pc 4M0ST 05 B5 A0 F0 G0 K0 M0 Spectral class 4MOST; De Jong 2011 Left: The 4MOST goal for radial velocity to nearly the centre of the Milky Way, RGB stars to Wetzel+2016 Group, substantially expanding on Gaia’s spectro 4MOST (black horizontal) overlaid on a Hertzsprung– scopic view. Distance limits for the 4MOST high res limits of 4MOST to the astrometric limits of Gaia, Russell diagram. 4MOST can measure Sun-like stars Effjcient full-sky surveying requires at (AAO) for FMOS (Akiyama et al., 2008) fjbres will permanently go to a spectro multiplex of > 3000 to create a unique, world-class facility. Most fjbres will lead LAMOST) Telescope (Hu et al., 2004). a number of trade-off studies to fjnd the

  7. but…what do we DO with all this data? Gaia Collaboration Wetzel et al. 2016, movie credit: Phil Hopkins Babusiaux et al 2018

  8. The Milky Way in M giants, RRLe 2028 LSST coadded depth MSTO stars (m=26.7) 5 Mpc 300 kpc (=Rvir?) Latte Simulation: arXiv:1602.05957 Figure courtesy Andrew Wetzel 150 kpc (extent of current samples) BHB stars

  9. 100 kpc Cooper+2010, Helmi+2011

  10. The accreted stellar halo is clumpy in constants-of-motion space Galactic coordinates Radial action (~energy) One particle = many stars Z angular momentum Constants of motion Sanderson , Helmi, & Hogg 2015 (using best-fit mass model for host galaxy) Sanderson et al. 2017a

  11. The stellar halo constrains the MW's gravitational potential Best fit mass profile Radial action (~energy) Distances to stars used in fit Z angular momentum Sanderson et al. 2017a

  12. The choice of stellar tracers matters K giants RR Lyrae K giants 20% “photometric distances” RR Lyrae 5% standard candles Sanderson et al. 2017b Sanderson 2016

  13. A route to untangling the stellar halo One particle = many stars Sanderson et al. 2017c

  14. Making predictions for a 6+D galaxy Synthetic Survey one particle = one “observed” star Galaxy Simulation Stellar Populations (cosmology, DM model, gravity, gas physics, star (stellar structure, stellar evolution, formation, stellar feedback, …) convection models, isochrone mapping, IMF, …) Phase-space density estimation 
 (kernel dimension, smoothing scales, ages, accretion history, …) Survey description Mock Catalog (Magnitude/color limits, one particle = extinction/reddening, one synthetic star selection function, error model, instrument model, …) One particle = many “stars” …with same age, abundances

  15. • Cosmological sim with hydro —> realistic central MW Ananke 
 • 6D + 10 abundances + ages + … Sanderson et al. 2018, 
 • Complete stellar populations arXiv:1806.10564 Andrew Wetzel Sarah Loebman Sanjib Sharma girder.hub.yt Available for Gaia DR2 on: irsa.ipac.caltech.edu

  16. • Cosmological sim with hydro —> realistic central MW Ananke 
 • 6D + 10 abundances + ages + … Sanderson et al. 2018 
 • Complete stellar populations arXiv:1806.10564 Mock Gaia Stars with: • 10% or better parallax uncertainty • extinction < 0.015 mag • G mag uncertainty <0.22 mag • G Bp , G Rp uncertainty < 0.054 mag Real Gaia girder.hub.yt Available for Gaia DR2 on: Babusiaux et al 2018 irsa.ipac.caltech.edu

  17. • Cosmological sim with hydro —> realistic central MW Ananke 
 • 6D + 10 abundances + ages + … Sanderson et al. 2018 
 • Complete stellar populations arXiv:1806.10564 m12i-lsr0 Mock Gaia Stars with: • 10% or better parallax uncertainty • extinction < 0.015 mag • G mag uncertainty <0.22 mag • G Bp , G Rp uncertainty < 0.054 mag m12f-lsr2 Real Gaia girder.hub.yt Available for Gaia DR2 on: irsa.ipac.caltech.edu

  18. Things to do with ananke • Validate your Gaia analysis technique 
 (matching columns have same names) • Train/interpret your machine-learning model • Test & tune [some] search algorithms • Investigate cosmic & viewpoint variance Things NOT to do with ananke • Estimate backgrounds/foregrounds 
 (stellar mass/density are not MW calibrated) • Study the edges of the selection function 
 (the built-in error model is way too simple) • Estimate completeness 
 (crowding not treated, extinction function not MW)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend