schism physical formulation
play

SCHISM physical formulation Joseph Zhang Advection 2 = + - PowerPoint PPT Presentation

1 SCHISM physical formulation Joseph Zhang Advection 2 = + = 0 u : advective velocity (usually known) Diffusion 3 = k : diffusivity


  1. 1 SCHISM physical formulation Joseph Zhang

  2. Advection 2 ๐ธ๐‘‘ ๐ธ๐‘ข = ๐œ–๐‘‘ ๐œ–๐‘ข + ๐’— โˆ™ ๐›ผ๐‘‘ = 0 u : advective velocity (usually known)

  3. Diffusion 3 ๐œ–๐‘‘ ๐œ–๐‘ข = ๐œ– ๐œ–๐‘จ ๐œ† ๐œ– ๐œ–๐‘จ k : diffusivity [m 2 /s]

  4. Advection-Diffusion 4 ๐ธ๐‘‘ ๐ธ๐‘ข = ๐œ– ๐œ–๐‘จ ๐œ† ๐œ– ๐œ–๐‘จ

  5. Dispersion 5 Waves of different frequencies travel at different phase speeds โ€ข Usually related to derivatives of odd order (of either physical or โ€ข numerical origin) ๐œ’ ๐‘ข + ๐œ’ ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ 6๐œ’๐œ’ ๐‘ฆ = 0 With dispersion No dispersion

  6. Governing equations: Reynolds-averged Navier-Stokes (with vegetation) 6 ๏‚ถ w Continuity equation ๏ƒ‘ ๏ƒ— ๏€ซ ๏€ฝ ๏€ฝ ๏ฎ 0, ( ( , )) u u u v ๏‚ถ z ๏‚ถ ๏จ ๏จ ๏ƒฒ ๏€ซ ๏ƒ‘ ๏ƒ— ๏€ฝ 0 h dz u Momentum equations ๏‚ถ ๏ฎ ๏€ญ vegetation t ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ ๐ธ๐’— 1 ๏จ D u u g ๏ƒฒ ๏€ฝ ๏€ญ ๏ƒ‘ ๏จ ๏ฎ ๏€ฝ ๏€ญ ๏‚ด ๏€ซ ๏ก ๏ƒ‘ ๏น ๏€ญ ๏ƒ‘ ๏€ญ ๏ƒ‘ ๏ฒ ๏บ ๏€ซ ๏ƒ‘ ๏ญ ๏ƒ‘ ห† ๏ƒง ๏ƒท + ; ( ) f g f f k u g p d u ๐‘’๐‘ข = ๐  โˆ’ ๐‘•๐›ผ๐œƒ + ๐’ ๐’œ โˆ’ ๐›ฝ ๐’— ๐’—๐‘€ ๐‘ฆ, ๐‘ง, ๐‘จ ๏‚ถ ๏‚ถ ๏ฒ ๏ฒ ๏ƒจ ๏ƒธ A Dt z z z 0 0 ๐œ‰ ๐œ–๐’— ๐œ–๐‘จ = ๐Š ๐‘ฅ , ๐‘จ = ๐œƒ Vertical b.c . (3D): ๐œ‰ ๐œ–๐’— ๐œ–๐‘จ = ๐œ“๐’— ๐‘ , ๐‘จ = โˆ’โ„Ž ๐œ–๐‘จ ๐œ‰ ๐œ–๐’— ๐œ– z , 3๐ธ ๐œ–๐‘จ East ๐’ ๐‘จ = ๐Š ๐’™ โˆ’ ๐œ“๐’— MSL , 2๐ธ x ๐ผ ๐‘€ ๐‘ฆ, ๐‘ง, ๐‘จ = แ‰Šโ„‹ ๐‘จ ๐‘ค โˆ’ ๐‘จ , 3๐ธ z=z v 1, 2๐ธ (vegetation) ๐›ฝ(๐‘ฆ, ๐‘ง) = ๐ธ ๐‘ค ๐‘‚ ๐‘ค ๐ท ๐ธ๐‘ค /2

  7. Governing equations: Reynolds-averged Navier-Stokes (with SAV) 7 ๏ฒ ๏€ฝ ๏ฒ ( , , ) Equation of state p S T ๏ฎ Transport of salt and temperature ๏ฎ ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ Dc c ๏€ฝ k ๏€ซ ๏€ซ ๏ƒ‘ k ๏ƒ‘ ๏€ฝ ๏ƒง ๏ƒท ( ), ( , ) Q c c S T ๏‚ถ ๏‚ถ ๏ƒจ ๏ƒธ h Dt z z Turbulence closure: Umlauf and Burchard 2003 ๏ฎ shear stratification ๐ธ๐‘™ ๐ธ๐‘ข = ๐œ– ๐œ” ๐œ–๐‘™ + ๐œ‰๐‘ 2 + ๐œ†๐‘‚ 2 โˆ’ ๐œ— + ๐‘‘ ๐‘”๐‘™ ๐›ฝ ๐’— 3 โ„‹(๐‘จ ๐‘ค โˆ’ ๐‘จ) ๐œ–๐‘จ ๐œ‰ ๐‘™ ๐œ–๐‘จ vegetation ๐ธ๐œ” ๐ธ๐‘ข = ๐œ– ๐œ–๐œ” + ๐œ” ๐‘™ ๐‘‘ ๐œ”1 ๐œ‰๐‘ 2 + ๐‘‘ ๐œ”3 ๐œ†๐‘‚ 2 โˆ’ ๐‘‘ ๐œ”2 ๐œ—๐บ ๐‘ฅ๐‘๐‘š๐‘š + ๐‘‘ ๐‘”๐œ” ๐›ฝ ๐’— 3 โ„‹(๐‘จ ๐‘ค โˆ’ ๐‘จ) ๐œ–๐‘จ ๐œ‰ ๐œ” ๐œ–๐‘จ ๏€จ ๏€ฉ p k ๏น ๏€ฝ 0 m n ๏ฌ , c ๏ญ

  8. On spherical coordinates 8 z g f 0 ( y ) z l 0 ( x ) l P Avoids polar singularity easily โ€ข f Preserves all original matrix properties โ€ข O y g x g We transform the coordinates instead of eqs There are 2 frames used: 1. Global 2. Lon/lat (local @ node/element/side) Changes to the code is mainly related to re-project vectors and to calculate distances

  9. Continuity equation 9 Vertical boundary conditions: kinematic z ๏€ฝ ๏จ ( , , ) z x y t surface ๏‚ถ ๏จ ๏‚ถ ๏จ ๏‚ถ ๏จ dz dx dy ๏‚บ ๏€ฝ ๏€ซ ๏€ซ ๏€ฝ ๏จ ๏€ซ ๏จ ๏€ซ ๏จ w u v ๏‚ถ ๏‚ถ ๏‚ถ x y t dt dt x dt y t ๏€ฝ ๏€ญ ( , ) z h x y bottom dz ๏‚บ ๏€ฝ ๏€ญ ๏€ญ w uh vh x y dt ๏จ ๏จ ๏ƒฒ ๏€ญ ๏ƒ‘ ๏ƒ— ๏€ซ ๏€ฝ 0 u dz w ๏€ญ h h Integrated continuity equation ๏‚ถ ๏จ ๏จ ๏ƒฒ ๏€ซ ๏ƒ‘ ๏ƒ— ๏€ฝ 0 u dz ๏‚ถ ๏€ญ t h ๏จ ๏ƒฒ ๏ƒ‘ ๏ƒ— ๏€ซ ๏จ ๏€ซ ๏จ ๏€ซ ๏จ ๏€ซ ๏€ซ ๏€ฝ 0 u dz u v uh vh t x y x y ๏€ญ h ๏จ ๏จ ๏ƒฒ ๏ƒฒ ๏ƒ‘ ๏ƒ— ๏€ฝ ๏ƒ‘ ๏ƒ— ๏€ซ ๏ƒ—๏ƒ‘ ๏จ ๏€ซ ( ) u dz u dz u h ๏€ญ ๏€ญ h h

  10. Hydrostatic model 10 Hydrostatic assumption ๏จ ๏ฒ ๏‚ถ 1 P ๏ƒฒ ๏€ญ ๏€ญ ๏€ฝ ๏ƒž ๏€ฝ ๏บ ๏€ซ 0 g P g d P ๏ฒ ๏‚ถ A z z Separation of horizontal and vertical scales ๏จ ๏ฒ ๏บ ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ 1 D u u ๏ƒฒ ๏€ฝ ๏€ญ ๏ƒ‘ ๏€ซ ๏ƒ‘ ๏ƒ— ๏ญ ๏ƒ‘ ๏€ซ ๏ฎ ๏€ญ ๏‚ด ( ) + ( ) ๏ƒง ๏ƒท u k u d P f ๏ฒ ๏‚ถ ๏‚ถ A ๏ƒจ ๏ƒธ Dt z z z ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ 1 D u u g ๏จ ๏ƒฒ ๏€ฝ ๏€ญ ๏ƒ‘ ๏จ ๏ฎ ๏€ญ ๏‚ด ๏€ซ ๏ก ๏ƒ‘ ๏น ๏€ญ ๏ƒ‘ ๏€ญ ๏ƒ‘ ๏ฒ ๏บ ๏€ซ ๏ƒ‘ ๏ญ ๏ƒ‘ ห† + ๏ƒง ๏ƒท ( ) g f k u g p d u ๏‚ถ ๏‚ถ ๏ฒ ๏ฒ ๏ƒจ ๏ƒธ A Dt z z z 0 0 Boussinesq assumption (=>incompressibility) ๏จ ๏จ ๏ƒฒ ๏ƒฒ ๏ƒ‘ ๏ฒ ๏บ ๏€ฝ ๏ƒ‘ ๏ฒ ๏บ ๏€ซ ๏ฒ ๏ƒ‘ ๏จ d d z z

  11. Momentum equation: vertical boundary condition (b.c.) 11 ๏‚ถ ๏ฎ ๏‚ถ u u Surface Bottom ๏ฎ ๏€ฝ ๏จ ๏€ฝ ๏€ฝ ๏€ญ ฯ„ at = z | | , at C u u z h ๏‚ถ ๏‚ถ w D b b z z Logarithmic law: ๏› ๏ ๏ฎ ๏€ซ ln ( ) / z h z ๏€ฝ ๏€ญ ๏‚ฃ ๏‚ฃ ๏ค ๏€ญ 0 , ( ) u u z h z h ๏ค 0 b b ln( / ) z b 0 : bottom roughness z 0 ๏‚ถ ๏ฎ u ๏ฎ ๏€ฝ u u b ๏‚ถ ๏€ซ ๏ค b ( )ln( / ) z z h z Reynolds stress: 0 b ๏ฎ ๏ค b z = ๏€ญ h ๏ฎ ๏€ฝ 1/ 2 2 , s K l m Turbulence closure: ๏€ฝ , s g ๏ฎ m 2 1 ๏€ฝ 2 / 3 2 | | K B C u 1 D b 2 ๏€ฝ k ๏€ซ ( ) l z h 0 Reynolds stress (const.) ๏ฎ ๏‚ถ k u ๏ฎ ๏€ฝ ๏€ญ ๏‚ฃ ๏‚ฃ ๏ค ๏€ญ 1/ 2 0 | | , ( ) C u u z h z h ๏‚ถ ๏ค D b b 0 b ln( / ) z z 0 b Drag coefficient: ๏€ญ 2 ๏ฎ ๏ƒฆ ๏ƒถ ๏ค 1 ln ๏€ฝ ๏ƒง b ๏ƒท C k D ๏ƒจ ๏ƒธ z 0 0

  12. Bottom drag 12 meters โ€ข Use of z 0 seems most natural option, but tends to over-estimate C D in shallow area โ€ข C D should vary with bottom layer thickness (i.e. vertical grid) โ€ข Different from 2D, 3D results of elevation depend on vertical grid (with constant C D )

  13. Transport equation: source terms 13 Precipitation and evaporation model ๏‚ถ ๏€ญ ( ) , S S E P k ๏€ฝ ๏€ฝ ๏จ z ๏‚ถ ๏ฒ z 0 E : evaporation rate (kg/m 2 /s) (calculated from heat exchange model) P : Precipitation rate (kg/m2/s) (measured) Heat exchange model ๏‚ถ T H k ๏€ฝ ๏€ฝ ๏จ ๏€ฝ ๏‚ฏ ๏€ญ ๏‚ญ ๏€ญ ๏€ญ , z ( ) H IR IR S E ๏‚ถ ๏ฒ z C 0 p ๏‚ถ 1 SW ๏€ฝ Q ๏ฒ ๏‚ถ C z 0 p IRโ€™s are down/upwelling infrared (LW) radiation at surface S is the turbulent flux of sensible heat (upwelling) E is the turbulent flux of latent heat (upwelling) SW is net downward solar radiation The solar radiation is penetrative (body force) with attenuation (which depends upon turbidity) acts as a heat source within the water.

  14. Air-sea exchange 14 1. Momentum: near-surface winds apply wind-stress on surface (influences advection, location of density fronts) free surface height: variations in atmospheric pressure over the domain โ€ข have a direct impact upon free surface height; set up due to wind stresses 2. Heat: various components of heat fluxes (dependent upon many variables) determine surface heat budget โ€ข shortwave radiation (solar) - penetrative โ€ข longwave radiation (infrared) โ€ข sensible heat flux (direct transfer of heat) โ€ข latent heat flux (heating/cooling associated with condensation/evaporation) 3. Mass: evaporation, condensation, precipitation act as sources/sinks of fresh water 1-2 are accomplished thru the heat/salt exchange model

  15. Solar radiation 15 Downwelling SW at the surface is forecast in NWP models - a function of time of year, time of day, weather conditions, latitude, etc [sflux_rad*.nc] Upwelling SW is a simple function of downwelling SW ๏‚ญ๏€ฝ ๏ก ๏‚ฏ SW SW ๏ก is the albedo - typically depends on solar zenith angle and sea state Attenuation of SW radiation in the water column is a function of turbidity and depth D (Jerlov, 1968, 1976; Paulson and Clayson, 1977): ๏ƒฉ ๏€ญ ๏€ญ ๏ƒน ๏€ฝ ๏€ญ ๏ก ๏‚ฏ ๏€ซ ๏€ญ / / D d D d ( ) (1 ) Re (1 R)e SW z SW ๏ƒซ 1 2 ๏ƒป R , d 1 and d 2 depend on water type; D is the distance from F.S. Type R d 1 (m) d 2 (m) III Jerlov I 0.58 0.35 23 Jerlov IA 0.62 0.60 20 Depth II Jerlov IB 0.67 1.00 17 (m) Jerlov II 0.77 1.50 14 Jerlov III 0.78 1.40 7.9 I โ€˜6โ€™ Paulson and Simpson 0.62 1.50 20 โ€˜7โ€™ Estuary 0.80 0.90 2.1 SW

  16. Infrared radiation 16 โ€ข Downwelling IR at the surface is forecast in NWP models - a function of air temperature, cloud cover, humidity, etc [sflux_rad*.nc] โ€ข Upwelling IR is can be approximated as either a broadband measurement solely within the IR wavelengths (i.e., 4-50 ฮผ m), or more commonly the blackbody radiative flux ๏‚ญ๏€ฝ es 4 IR T sfc e is the emissivity, ~1 s is the Stefan-Boltzmann constant T sfc is the surface temperature

  17. Turbulent Fluxes of Sensible and Latent Heat 17 In general, turbulent fluxes are a function of: โ€ข T sfc ,, T air โ€ข near-surface wind speed โ€ข surface atmospheric pressure โ€ข near-surface humidity Scales of motion responsible for these heat fluxes are much smaller than can be resolved by any operational model - they must be parameterized (i.e., bulk aerodynamic formulation) ๏€ฝ ๏€ญ ๏ฒ ๏€ฝ ๏€ญ ๏ฒ ' ' S C w T C u T * * a pa a pa ๏€ฝ ๏€ญ ๏ฒ ๏€ฝ ๏€ญ ๏ฒ ' ' E L w q L u q * * a e a e where: u * is the friction scaling velocity T * is the temperature scaling parameter q * is the specific humidity scaling parameter ๏ฒ a is the surface air density C pa is the specific heat of air L e is the latent heat of vaporization The scaling parameters are defined using Monin-Obukhov similarity theory, and must be solved for iteratively (i.e., Zeng et al., 1998).

  18. 18 Wind Shear Stress: Turbulent Flux of Momentum Calculation of shear stress follows naturally from calculation of turbulent heat fluxes Total shear stress of atmosphere upon surface: ๏ฒ ๏ด ๏€ฝ 2 a u ๏ฒ * w 0 Alternatively, Pond and Picardโ€™s formulation can be used as a simpler option ๏ฒ ๏€ฝ ฯ„ u u a | | C ๏ฒ w ds w w 0 ๏€ซ ' 0.61 0.063 u ๏€ฝ w C ds 1000 ๏€ฝ ' max(6, min(50, )) u u w w

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend