sasaki projections and related operations
play

Sasaki projections and related operations Jeannine Gabri els*, - PowerPoint PPT Presentation

Sasaki projections and related operations Jeannine Gabri els*, Stephen Gagola III**, and Mirko Navara* * Czech Technical University in Prague ** University of the Witwatersrand, Johannesburg TACL, Prague 2017 Sasaki projection x ( x


  1. Sasaki projections and related operations Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara* * Czech Technical University in Prague ** University of the Witwatersrand, Johannesburg TACL, Prague 2017 Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  2. What is quantum logic? Crucial example: The lattice of closed subspaces of a separable Hilbert space H x ∧ y = x ∩ y x ′ = the closure of { u | u ⊥ v for all v ∈ x } x ∨ y = ( x ′ ∧ y ′ ) ′ Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  3. Orthomodular lattice More generally [Birkhoff, von Neumann 1936]: Definition An orthomodular lattice is a bounded lattice with an orthocomplementation ′ satisfying x � y ⇒ y ′ � x ′ x ′′ = x x ′ is the lattice-theoretical complement of x : x ∧ x ′ = 0 x ∨ x ′ = 1 x � y ⇒ y = x ∨ ( x ′ ∧ y ) ( orthomodular law ) Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  4. What can the algebraic properties say about linear subspaces? Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  5. What can the algebraic properties say about linear subspaces? Whether x = y , Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  6. What can the algebraic properties say about linear subspaces? Whether x = y , x ≤ y , Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  7. What can the algebraic properties say about linear subspaces? Whether x = y , x ≤ y , x = y ′ , Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  8. What can the algebraic properties say about linear subspaces? Whether x = y , x ≤ y , x = y ′ , x ⊥ y (i.e., x ≤ y ′ ). Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  9. What can the algebraic properties say about linear subspaces? Whether x = y , x ≤ y , x = y ′ , x ⊥ y (i.e., x ≤ y ′ ). In all these (and some other) cases, x , y generate a finite Boolean subalgebra; Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  10. What can the algebraic properties say about linear subspaces? Whether x = y , x ≤ y , x = y ′ , x ⊥ y (i.e., x ≤ y ′ ). In all these (and some other) cases, x , y generate a finite Boolean subalgebra; we say that x , y commute ; in symbols, x C y . Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  11. What else can the algebraic properties say about linear subspaces? Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  12. What else can the algebraic properties say about linear subspaces? Can we determine the angle ∠ ( x , y )? Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  13. What else can the algebraic properties say about linear subspaces? Can we determine the angle ∠ ( x , y )? Yes if ∠ ( x , y ) ∈ { 0 , π/ 2 } ; then x , y commute. Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  14. What else can the algebraic properties say about linear subspaces? Can we determine the angle ∠ ( x , y )? Yes if ∠ ( x , y ) ∈ { 0 , π/ 2 } ; then x , y commute. Not in general. Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  15. What else can the algebraic properties say about linear subspaces? Can we determine the angle ∠ ( x , y )? Yes if ∠ ( x , y ) ∈ { 0 , π/ 2 } ; then x , y commute. Not in general. We can describe at least the orthogonal projection of y to x , x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y φ x ... Sasaki projection , ∗ ... Sasaki operation . Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  16. What else can the algebraic properties say about linear subspaces? Can we determine the angle ∠ ( x , y )? Yes if ∠ ( x , y ) ∈ { 0 , π/ 2 } ; then x , y commute. Not in general. We can describe at least the orthogonal projection of y to x , x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y φ x ... Sasaki projection , ∗ ... Sasaki operation . x C y = ⇒ φ x ( y ) = x ∧ y Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  17. Sasaki (binary) operation The Sasaki operation is neither commutative nor associative, it satisfies idempotence x ∗ x = x neutral element 1 ∗ x = x ∗ 1 = x absorption element 0 ∗ x = x ∗ 0 = 0 Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  18. Sasaki (binary) operation The Sasaki operation is neither commutative nor associative, it satisfies idempotence x ∗ x = x neutral element 1 ∗ x = x ∗ 1 = x absorption element 0 ∗ x = x ∗ 0 = 0 The Sasaki operation and its dual, Sasaki hook , may be better candidates for the conjunction and disjunction of a quantum logic than the meet and join [Pykacz 2015]. Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  19. Weaker forms of associativity The only OML operations in x . y which are associative are x ∧ y , x ∨ y , x , y , 0 , 1 Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  20. Weaker forms of associativity The only OML operations in x . y which are associative are x ∧ y , x ∨ y , x , y , 0 , 1 Theorem (Alternative algebra) An OML with the Sasaki operation forms an alternative algebra, i.e., x ∗ ( x ∗ y ) = ( x ∗ x ) ∗ y (left identity) ( y ∗ x ) ∗ x = y ∗ ( x ∗ x ) (right identity) x ∗ ( y ∗ x ) = ( x ∗ y ) ∗ x (flexible identity) Theorem (Moufang–like identities) ( x ∗ y ∗ x ) ∗ z = ( x ∗ y ) ∗ ( x ∗ z ) � � z ∗ ( x ∗ y ) ∗ x = z ∗ ( x ∗ y ∗ x ) � � ( x ∗ y ) ∗ z ∗ x = ( x ∗ y ) ∗ ( z ∗ x ) Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  21. Properties of Sasaki projection It preserves joins φ x ( y ∨ z ) = φ x ( y ) ∨ φ x ( z ) , Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  22. Properties of Sasaki projection It preserves joins φ x ( y ∨ z ) = φ x ( y ) ∨ φ x ( z ) , = ⇒ monotonicity. Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  23. Properties of Sasaki projection It preserves joins φ x ( y ∨ z ) = φ x ( y ) ∨ φ x ( z ) , = ⇒ monotonicity. The dual of a monotonic mapping θ is θ ( y ) = ( θ ( y ′ )) ′ . Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  24. Composition of Sasaki projections φ p φ q � = φ q φ p in general Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  25. Composition of Sasaki projections φ p φ q � = φ q φ p in general φ p φ q = φ q φ p = φ p ∧ q ⇐ ⇒ p C q Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  26. Composition of Sasaki projections φ p φ q � = φ q φ p in general φ p φ q = φ q φ p = φ p ∧ q ⇐ ⇒ p C q φ p φ q = φ q φ p = φ p ⇐ ⇒ p � q Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  27. Relation to Baer *-semigroups Φ( L ) ... the set of all Sasaki projections S ( L ) ... the set of all their finite compositions Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

  28. Relation to Baer *-semigroups Φ( L ) ... the set of all Sasaki projections S ( L ) ... the set of all their finite compositions Each ξ = φ x n · · · φ x 2 φ x 1 ∈ S ( L ) has a unique adjoint ξ ∗ ( y ) = min { z ∈ L | ξ ( z ) ≥ y } , which is ξ ∗ = φ x 1 φ x 2 · · · φ x n ∈ S ( L ). Sasaki projection x ∧ ( x ′ ∨ y ) = φ x ( y ) = x ∗ y Jeannine Gabri¨ els*, Stephen Gagola III**, and Mirko Navara*

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend