runge kutta methods
play

Runge Kutta Methods Bernd Schr oder logo1 Bernd Schr oder - PowerPoint PPT Presentation

Error Analysis Improved Euler Method Runge-Kutta Methods Runge Kutta Methods Bernd Schr oder logo1 Bernd Schr oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods Error Analysis Improved Euler Method


  1. Error Analysis Improved Euler Method Runge-Kutta Methods Runge Kutta Methods Bernd Schr¨ oder logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  2. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  3. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 1. Taylor’s Formula . If the function y is n + 1 times differentiable, then for any h there is a c between x and x + h so that y ( x + h )= y ( x )+ y ′ ( x ) h + y ′′ ( x ) 2! h 2 + ··· + y ( n ) ( x ) h n + y ( n + 1 ) ( c ) ( n + 1 ) ! h n + 1 . n ! logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  4. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 1. Taylor’s Formula . If the function y is n + 1 times differentiable, then for any h there is a c between x and x + h so that y ( x + h )= y ( x )+ y ′ ( x ) h + y ′′ ( x ) 2! h 2 + ··· + y ( n ) ( x ) h n + y ( n + 1 ) ( c ) ( n + 1 ) ! h n + 1 . n ! 2. Euler’s method . For y ′ = F ( x , y ) , y ( x ) = y 0 we use that y ( x )+ y ′ ( x ) ∆ x y ( x + ∆ x ) ≈ logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  5. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 1. Taylor’s Formula . If the function y is n + 1 times differentiable, then for any h there is a c between x and x + h so that y ( x + h )= y ( x )+ y ′ ( x ) h + y ′′ ( x ) 2! h 2 + ··· + y ( n ) ( x ) h n + y ( n + 1 ) ( c ) ( n + 1 ) ! h n + 1 . n ! 2. Euler’s method . For y ′ = F ( x , y ) , y ( x ) = y 0 we use that y ( x )+ y ′ ( x ) ∆ x y ( x + ∆ x ) ≈ = y 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  6. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 1. Taylor’s Formula . If the function y is n + 1 times differentiable, then for any h there is a c between x and x + h so that y ( x + h )= y ( x )+ y ′ ( x ) h + y ′′ ( x ) 2! h 2 + ··· + y ( n ) ( x ) h n + y ( n + 1 ) ( c ) ( n + 1 ) ! h n + 1 . n ! 2. Euler’s method . For y ′ = F ( x , y ) , y ( x ) = y 0 we use that y ( x )+ y ′ ( x ) ∆ x y ( x + ∆ x ) ≈ = y 0 + F ( x , y 0 ) ∆ x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  7. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 1. Taylor’s Formula . If the function y is n + 1 times differentiable, then for any h there is a c between x and x + h so that y ( x + h )= y ( x )+ y ′ ( x ) h + y ′′ ( x ) 2! h 2 + ··· + y ( n ) ( x ) h n + y ( n + 1 ) ( c ) ( n + 1 ) ! h n + 1 . n ! 2. Euler’s method . For y ′ = F ( x , y ) , y ( x ) = y 0 we use that y ( x )+ y ′ ( x ) ∆ x y ( x + ∆ x ) ≈ = y 0 + F ( x , y 0 ) ∆ x = : y Euler ( x + ∆ x ) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  8. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  9. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  10. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x + ∆ x ) = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  11. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x + ∆ x ) = y ( x ) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  12. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x )+ y ′ ( x ) ∆ x y ( x + ∆ x ) = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  13. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x )+ y ′ ( x ) ∆ x + y ′′ ( c ) 2! ( ∆ x ) 2 y ( x + ∆ x ) = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  14. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x )+ y ′ ( x ) ∆ x + y ′′ ( c ) 2! ( ∆ x ) 2 y ( x + ∆ x ) = = y Euler ( x + ∆ x ) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  15. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x )+ y ′ ( x ) ∆ x + y ′′ ( c ) 2! ( ∆ x ) 2 y ( x + ∆ x ) = y Euler ( x + ∆ x )+ y ′′ ( c ) 2! ( ∆ x ) 2 = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  16. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x )+ y ′ ( x ) ∆ x + y ′′ ( c ) 2! ( ∆ x ) 2 y ( x + ∆ x ) = y Euler ( x + ∆ x )+ y ′′ ( c ) 2! ( ∆ x ) 2 = 4. So the error in each step is proportional to ( ∆ x ) 2 . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  17. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x )+ y ′ ( x ) ∆ x + y ′′ ( c ) 2! ( ∆ x ) 2 y ( x + ∆ x ) = y Euler ( x + ∆ x )+ y ′′ ( c ) 2! ( ∆ x ) 2 = 4. So the error in each step is proportional to ( ∆ x ) 2 . 5. Summing the errors for b − a steps gives an overall error ∆ x proportional to ∆ x . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  18. Error Analysis Improved Euler Method Runge-Kutta Methods Errors in Euler’s Method 3. But we know that y ( x )+ y ′ ( x ) ∆ x + y ′′ ( c ) 2! ( ∆ x ) 2 y ( x + ∆ x ) = y Euler ( x + ∆ x )+ y ′′ ( c ) 2! ( ∆ x ) 2 = 4. So the error in each step is proportional to ( ∆ x ) 2 . 5. Summing the errors for b − a steps gives an overall error ∆ x proportional to ∆ x . (Details are more subtle than it looks.) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  19. Error Analysis Improved Euler Method Runge-Kutta Methods How can we Shrink the Error? logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  20. Error Analysis Improved Euler Method Runge-Kutta Methods How can we Shrink the Error? 1. Shrinking ∆ x is costly. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  21. Error Analysis Improved Euler Method Runge-Kutta Methods How can we Shrink the Error? 1. Shrinking ∆ x is costly. 2. So a formula with a smaller error would be nice. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  22. Error Analysis Improved Euler Method Runge-Kutta Methods How can we Shrink the Error? 1. Shrinking ∆ x is costly. 2. So a formula with a smaller error would be nice. 3. The global error’s proportionality to ∆ x in Euler’s method came from the fact that Euler’s method uses the first two terms of the Taylor expansion. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  23. Error Analysis Improved Euler Method Runge-Kutta Methods How can we Shrink the Error? 1. Shrinking ∆ x is costly. 2. So a formula with a smaller error would be nice. 3. The global error’s proportionality to ∆ x in Euler’s method came from the fact that Euler’s method uses the first two terms of the Taylor expansion. 4. If we can capture more than the first two terms of the Taylor expansion, we could get a global error proportional to ( ∆ x ) n . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  24. Error Analysis Improved Euler Method Runge-Kutta Methods How can we Shrink the Error? 1. Shrinking ∆ x is costly. 2. So a formula with a smaller error would be nice. 3. The global error’s proportionality to ∆ x in Euler’s method came from the fact that Euler’s method uses the first two terms of the Taylor expansion. 4. If we can capture more than the first two terms of the Taylor expansion, we could get a global error proportional to ( ∆ x ) n . This would be good, because ∆ x is usually small, so a higher power of ∆ x would be even smaller. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

  25. Error Analysis Improved Euler Method Runge-Kutta Methods Improving Euler’s Method logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Runge Kutta Methods

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend