role of tensors in numerical mathematics
play

role of tensors in numerical mathematics Lek-Heng Lim University - PowerPoint PPT Presentation

role of tensors in numerical mathematics Lek-Heng Lim University of Chicago February 2, 2015 thanks: NSF DMS 1209136, DMS 1057064, AFOSR FA9550-13-1-0133 what is a tensor? a tensor is a multilinear functional f : V 1 V d


  1. role of tensors in numerical mathematics Lek-Heng Lim University of Chicago February 2, 2015 thanks: NSF DMS 1209136, DMS 1057064, AFOSR FA9550-13-1-0133

  2. what is a tensor? • a tensor is a multilinear functional f : V 1 × · · · × V d → R for k = 1 , . . . , d , f ( v 1 , . . . , α u k + β w k , . . . , v d ) = α f ( v 1 , . . . , u k , . . . , v d ) + β f ( v 1 , . . . , w k , . . . , v d ) • if we give f coordinates, i.e., choose bases on V 1 , . . . , V d , get hypermatrix A = ( a j 1 ··· j d ) ∈ R n 1 ×···× n d where n 1 = dim V 1 , . . . , n d = dim V d • d -dimensional hypermatrix is d -tensor in coordinates • matrix is linear operator/bilinear form/dyad in coordinates

  3. matrix notions may be extended • rank • hyperdeterminant • positive definiteness • rank retaining decompositions • system of multilinear equations • multilinear programming • multilinear least squares • eigenvalues and eigenvectors • singular values and singular vectors • Gaussian elimination and QR factorization • nonnegative tensors and Perron-Frobenius theory • spectral, operator, H¨ older, nuclear norms [L.-H. Lim, “Tensors and hypermatrices,” Chapter 15, 30 pp., in L. Hogben (Ed.), Handbook of Linear Algebra , 2nd Ed., CRC Press, 2013]

  4. matrix operations may be extended • linear combination: A , B ∈ R n 1 ×···× n d , α, β ∈ R , α A + β B = ( α a j 1 ··· j d + β b j 1 ··· j d ) • outer product: A ∈ R n 1 ×···× n d , B ∈ R m 1 ×···× m e , A ⊗ B = ( a i 1 ··· i d b j 1 ··· j e ) ∈ R n 1 ×···× n d × m 1 ×···× m e • contraction: A ∈ R n 1 ×···× n d − 1 × p , B ∈ R p × m 2 ×···× m e , � p � � ∈ R n 1 ×···× n d − 1 × m 2 ×···× m e � A , B � d : 1 = a i 1 ··· i d − 1 k b kj 2 ··· j e k = 1 • all arise from coordinate-free operations on tensors • what about multiplication? e.g. take A , B ∈ R n × n × n and form AB ∈ R n × n × n

  5. tensors are useful

  6. why tensors 1 • d = 0 , 1 , 2: scalars, vectors, matrices • why should you care about d > 2? • comes up more often than you might expect principle of linearity: in almost any natural process, if we make sufficiently small changes, the variation will be linear with respect to the changes principle of multilinearity: in almost any natural process, if we keep all but one factor constant, the principle of linearity will apply to that changing factor 1 succumbing to popular (but erroneous) nomenclature, will use the term ‘tensor’ even when referring to a hypermatrix

  7. derivatives, moments, cumulants • higher-order derivatives ∇ f ( x ) ∈ R n , ∇ 2 f ( x ) ∈ R n × n , f ( x ) ∈ R , ∇ 3 f ( x ) ∈ R n × n × n , ∇ 4 f ( x ) ∈ R n × n × n × n , . . . • higher-order moments E ( x ⊗ x ⊗ · · · ⊗ x ) ∈ R n × n ×···× n • higher-order cumulants m � i | α | κ α ( x ) t α log E ( exp ( i � t , x � )) ≈ α ! | α | = 1 • mean, variance, skewness, kurtosis ( κ α ( x )) | α | = 1 ∈ R n , ( κ α ( x )) | α | = 2 ∈ R n × n , ( κ α ( x )) | α | = 3 ∈ R n × n × n , ( κ α ( x )) | α | = 4 ∈ R n × n × n × n , . . .

  8. principal components of cumulants PCA right singular vectors Principal kurtosis components 0.4 0.4 1 11 0.3 0.2 50 3 14 12 6 24 21 13 3 22 35 33 32 14 10 1 45 25 37 8 16 4 36 7 0.2 0 11 34 39 19 5 45 41 29 27 40 46 47 31 49 18 20 50 26 43 2 44 23 38 15 42 48 30 30 9 19 8 28 38 33 24 0.1 −0.2 43 Comp 2 18 Comp 2 32 28 26 22 21 27 29 40 34 48 31 37 0 41 −0.4 13 17 10 6 44 16 35 47 4 20 15 25 46 −0.1 5 −0.6 49 12 42 23 39 2 −0.2 −0.8 36 17 9 7 −0.3 −1 −0.5 0 0.5 −0.5 0 0.5 1 Comp 1 Comp 1 Figure: all Gaussian except 17 and 39; left: principal components; right: principal kurtosis components (thanks! Rasmus)

  9. quantum mechanics • H 1 , . . . , H d state spaces, state space of unified system is S ⊆ H 1 ⊗ · · · ⊗ H d • S has factorizable states ψ 1 ⊗ · · · ⊗ ψ d and mixed states αψ 1 ⊗ · · · ⊗ ψ d + · · · + βϕ 1 ⊗ · · · ⊗ ϕ d • H j : H j → H j Hamiltonian of j th system and I identity H 1 ⊗ I ⊗ · · · ⊗ I + I ⊗ H 2 ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ H d Hamiltonian of unified system if systems do not interact • indistinguishable systems H 1 = · · · = H d = H : bosons state space of unified system is S d ( H ) ⊆ H ⊗ d fermions state space of unified system is Λ d ( H ) ⊆ H ⊗ d

  10. quarks • V ⊗ V = S 2 ( V ) ⊕ Λ 2 ( V ) • V ⊗ V ⊗ V = S 3 ( V ) ⊕ S ( 2 , 1 ) ( V ) ⊕ S ( 2 , 1 ) ( V ) ⊕ Λ 3 ( V ) • special case: V = C 3 : standard basis of C 3 × 3 × 3 E ijk = e i ⊗ e j ⊗ e k where e 1 , e 2 , e 3 standard basis of C 3 • interpretation e 1 = | u � = state of the u -quark e 2 = | d � = state of the d -quark e 3 = | s � = state of the s -quark E ijk = composite state of the three quark states e i , e j , e k • proton, two u -quarks and one d -quark, has state 2 ( e 1 ⊗ e 1 ⊗ e 2 − e 2 ⊗ e 1 ⊗ e 1 ) ∈ S ( 2 , 1 ) ( C 3 )

  11. latent variables • behind one of the most fundamental graphical models • na¨ ıve Bayes model � Pr ( x , y , z ) = h Pr ( h ) Pr ( x | h ) Pr ( y | h ) Pr ( z | h ) H ◦ • • • X Y Z • e.g. causality inference, phylogenetics

  12. example: phylogenetics • Markov model for 3-taxon tree [Allman–Rhodes, 2003] • probability distribution given by 4 × 4 × 4 table with model P = π A ρ A ⊗ σ A ⊗ θ A + π C ρ C ⊗ σ C ⊗ θ C + π G ρ G ⊗ σ G ⊗ θ G + π T ρ T ⊗ σ T ⊗ θ T • for i , j , k ∈ { A , C , G , T } p ijk = π A ρ Ai σ Aj θ Ak + π C ρ Ci σ Cj θ Ck + π G ρ Gi σ Gj θ Gk + π T ρ Ti σ Tj θ Tk

  13. neuroimaging identify neural fibers as from diffusion MRI data fODF Maxima Schultz–Seidel [T. Schultz, A. Fuster, A. Ghosh, L. Florack, and L.-H. Lim, “Higher-order tensors in diffusion imaging,” pp. 129–161, Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data , Springer, 2014]

  14. positive decomposition • A = ( a ijkl ) ∈ S 4 ( R n ) , i.e., a ijkl = a ijlk = a jilk = · · · = a lkji • want positive decomposition A = λ 1 v 1 ⊗ v 1 ⊗ v 1 ⊗ v 1 + · · · + λ r v r ⊗ v r ⊗ v r ⊗ v r with r minimal and λ 1 ≥ λ 2 ≥ · · · ≥ λ r > 0 , � v 1 � = · · · = � v r � = 1 • more generally for any even order d ≥ 4 • generalization of symmetric eigenvalue decomposition for positive semidefinite matrices • not always possible — say ‘positively decomposable’ if decomposition exist

  15. diffusion MRI imaging • after preprocessing, MRI signal is f : S 2 → R • f is homogeneous polynomial of even degree, � n f ( x ) = j 1 ,..., j d = 1 a j 1 ··· j d x j 1 · · · x j d ∈ R [ x 1 , . . . , x n ] d • coefficients are hypermatrices A = ( a j 1 ··· j d ) ∈ R n × n ×···× n • model implies f is sum of powers of linear forms � r i = 1 ( v T i x ) d f ( x ) = • equivalently, A positively decomposable � r i = 1 v ⊗ d A = i • v i gives direction of i th fiber in a voxel [L.-H. Lim and T. Schultz, “Moment tensors and high angular resolution diffusion imaging,” preprint , (2015)]

  16. complexity

  17. most tensor problems are NP-hard • some have no FPTAS • some are NP-hard even to approximate • some are #P-hard • some are VNP-complete • some are undecidable • isn’t this bad news? [C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” Journal of the ACM , 60 (2013), no. 6, Art. 45, 39 pp.]

  18. encoding NP-hard problems 1 2 1 2 4 3 4 3 3-colorings encoded as real solutions to bilinear system: a 1 c 1 − b 1 d 1 − u 2 , b 1 c 1 + a 1 d 1 , c 1 u − a 2 1 + b 2 1 , d 1 u − 2 a 1 b 1 , a 1 u − c 2 1 + d 2 1 , b 1 u − 2 d 1 c 1 , a 2 c 2 − b 2 d 2 − u 2 , b 2 c 2 + a 2 d 2 , c 2 u − a 2 2 + b 2 2 , d 2 u − 2 a 2 b 2 , a 2 u − c 2 2 + d 2 2 , b 2 u − 2 d 2 c 2 , a 3 c 3 − b 3 d 3 − u 2 , b 3 c 3 + a 3 d 3 , c 3 u − a 2 3 + b 2 3 , d 3 u − 2 a 3 b 3 , a 3 u − c 2 3 + d 2 3 , b 3 u − 2 d 3 c 3 , a 4 c 4 − b 4 d 4 − u 2 , b 4 c 4 + a 4 d 4 , c 4 u − a 2 4 + b 2 4 , d 4 u − 2 a 4 b 4 , a 4 u − c 2 4 + d 2 4 , b 4 u − 2 d 4 c 4 , a 2 1 − b 2 1 + a 1 a 3 − b 1 b 3 + a 2 3 − b 2 3 , a 2 1 − b 2 1 + a 1 a 4 − b 1 b 4 + a 2 4 − b 2 4 , a 2 1 − b 2 1 + a 1 a 2 − b 1 b 2 + a 2 2 − b 2 2 , a 2 2 − b 2 2 + a 2 a 3 − b 2 b 3 + a 2 3 − b 2 3 , a 2 3 − b 2 3 + a 3 a 4 − b 3 b 4 + a 2 4 − b 2 4 , 2 a 1 b 1 + a 1 b 2 + a 2 b 1 + 2 a 2 b 2 , 2 a 2 b 2 + a 2 b 3 + a 3 b 2 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 3 + a 2 b 1 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 4 + a 4 b 1 + 2 a 4 b 4 , 2 a 3 b 3 + a 3 b 4 + a 4 b 3 + 2 a 4 b 4 , w 2 1 + w 2 2 + · · · + w 2 17 + w 2 18 bilinear system: y T A k z = x T B k z = x T C k y = 0, k = 1 , . . . , n

  19. tensors shed light on foundational questions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend