rivet for heavy ions
play

Rivet for Heavy Ions introduction & tutorial Christian Bierlich, - PowerPoint PPT Presentation

Rivet for Heavy Ions introduction & tutorial Christian Bierlich, bierlich@thep.lu.se University of Copenhagen Lund University February 25 2019, COST Workshop Lund 1 Before we start... Prepare your laptops for the tutorial while I talk.


  1. Rivet for Heavy Ions introduction & tutorial Christian Bierlich, bierlich@thep.lu.se University of Copenhagen Lund University February 25 2019, COST Workshop Lund 1

  2. Before we start... • Prepare your laptops for the tutorial while I talk. • if experienced with rivet: 1. Download the latest version of Rivet from https://rivet.hepforge.org/ . 2. Remember to also upgrade YODA from https://yoda.hepforge.org/ . 3. Run with your favourite generator. • else: 1. Download and install VirtualBox from https://www.virtualbox.org/ . 2. Load up the VM distributed on usb-sticks. 3. Username: mcnet , password: jetset . 4. Rivet 2.7.0 and Pythia 8.240 installed (+ dependencies). 5. Also contains small prerun samples in HepMC format. 2

  3. Rivet • Analysis system for Monte Carlo events. (Buckley et. al. : arXiv:1003.0694.) 1. Data preservation. 2. Monte Carlo validation. • Generator independent, HepMC events, many analysis tools. • C++ library with analyses as ”plugins”, optimally written by the analyser. The biggger picture Physics theory Phenomenological model Event generator Analysis and validation Rivet Nature Collider experiment Detector experiment 3

  4. What is a ”rivet analysis”? • Unfolded data + analysis code. • Data and code is delivered in a format such that one can easily compare to a HepMC compatible generator. • Simple example ALICE 2010 I880049.cc . 4

  5. Rivet for heavy ions • Heavy Ions have traditionally not been prioritized. • Lack of common interest (few MCs for HI). • Lack of specialized functionality → High threshold. 5

  6. Rivet for heavy ions • Heavy Ions have traditionally not been prioritized. • Lack of common interest (few MCs for HI). • Lack of specialized functionality → High threshold. That has changed! ⋄ Experimental community: pilot project lead by J. F. Grosse-Oetringhaus, P. Karczmarczyk, J. Klein (ALICE: CERN). ⋄ MC community: efforts by C. Bierlich, L. L¨ onnblad (Pythia, DIPSY: Lund). ⋄ Efforts joined 2018: supported by Rivet core group and University of Copenhagen, resulting in release 2.7.0. 5

  7. New features 1. Centrality selection → analysis options. 2. Comparing to pp → re-entrant finalize. 3. Flow observables → generic framework. 4. Several shorthand projections for specific experiments. 5. 20 new analyses using these features, pp , p Pb, AuAu and PbPb. 6

  8. Centrality selection • Centrality is ubiquitous, but not directly measurable. • Experiment: Forward particle production/energy flow as proxy. Cannot always be unfolded. • MC: Not always feasible to fold prediction with ”forward central” correlation. 7

  9. Centrality selection • Centrality is ubiquitous, but not directly measurable. • Experiment: Forward particle production/energy flow as proxy. Cannot always be unfolded. • MC: Not always feasible to fold prediction with ”forward central” correlation. Solution: Users’ choice between several options 1. Experimental measure (if existing). 2. Generated version of experimental measure. 3. Impact parameter distribution. 4. MC supplies centrality number. • Three latter requires a ”calibration run”. 7

  10. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Centrality selection, calibration • Example calibration: ATLAS PBPB CENTRALITY . • (data points extracted from paper, not unfolded). T distribution, Pb–Pb √ s NN = 2.76 TeV Sum E Pb 10 − 2 ( 1/ N evt ) d N /d ∑ E Pb T bbb b b Data b b b b b b b b b b MC 10 − 3 10 − 4 T distribution, Pb–Pb √ s NN = 2.76 TeV Sum E Pb b b 10 − 5 ( 1/ N evt ) d N /d b MC 10 − 1 10 − 6 10 − 7 1 . 4 1 . 3 10 − 2 MC/Data 1 . 2 1 . 1 1 bbb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 0 . 9 0 . 8 0 . 7 0 . 6 0 . 5 0 500 1 . 0 · 10 3 1 . 5 · 10 3 2 . 0 · 10 3 2 . 5 · 10 3 3 . 0 · 10 3 3 . 5 · 10 3 0 5 10 15 20 ∑ E ⊥ b [fm] • Generated histograms are preloaded into Rivet: new preload option. 8

  11. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Centrality and Rivet options + live demo • New Rivet functionality: Analysis options, selected at run time. • Run the same analysis, with different options. • Example: ALICE 2010 I880049 . • Live demo: ATLAS pPb Calib and ATLAS 2015 I1386475 . N ch vs. centrality, Pb–Pb √ s NN = 2 . 76 TeV N part vs. centrality, Pb–Pb √ s NN = 2 . 76 TeV 1 . 8 · 10 3 d N ch /d η � N part � 400 Data Data 1 . 6 · 10 3 MC [cent=GEN] 350 MC [cent=GEN] 1 . 4 · 10 3 MC [cent=IMP] MC [cent=IMP] 300 1 . 2 · 10 3 250 1 . 0 · 10 3 200 800 150 600 100 400 50 200 0 0 1 . 4 1 . 4 1 . 3 1 . 3 MC/Data 1 . 2 MC/Data 1 . 2 1 . 1 1 . 1 1 1 0 . 9 0 . 9 0 . 8 0 . 8 0 . 7 0 . 7 0 . 6 0 . 6 0 . 5 0 . 5 0 10 20 30 40 50 70 0 10 20 30 40 50 70 60 80 60 80 Centrality [%] Centrality [%] 9

  12. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Ratios to pp – ”nuclear modification factors” R AA vs. p ⊥ , Centr = 0 − 5 %, √ s NN = 2 . 76 TeV I AA away-side 10 2 I AA R AA 3 Data Data MC MC 2 . 5 10 1 2 1 . 5 1 1 b b b b b b b b b b 0 . 5 10 − 1 0 1 . 4 1 . 4 1 . 3 1 . 3 MC/Data 1 . 2 MC/Data 1 . 2 1 . 1 1 . 1 1 1 b b b b b b b b b b 0 . 9 0 . 9 0 . 8 0 . 8 0 . 7 0 . 7 0 . 6 0 . 6 0 . 5 0 . 5 3 4 5 7 9 10 1 10 1 6 8 p t , assoc [GeV/c] p ⊥ [ GeV / c ] ALICE 2012 I930312, ALICE 2012 I1127497 . New feature: rivet-merge 1. Read in histogram files, and re-generate analysis objects (must be .yoda streamable). 2. Run void finalize() again. 10

  13. Flow observables – generic framework • Piecewise inclusion of HI observables, first: Flow coefficients and cumulants. • Generic framework (the flow equivalent of FastJet!) and add-ons implemented. (1010.0233, 1312.4572) . • Functionality, calculate any �� M �� m , n . • Automatic subtraction of lower orders and error calculation. 11

  14. Flow observables – generic framework • Piecewise inclusion of HI observables, first: Flow coefficients and cumulants. • Generic framework (the flow equivalent of FastJet!) and add-ons implemented. (1010.0233, 1312.4572) . • Functionality, calculate any �� M �� m , n . • Automatic subtraction of lower orders and error calculation. 1 hc24 = bookScatter2D("c24" ,120 ,0 ,120); 2 ec22 = bookECorrelator <2,2>("ec22",hc22); 3 ec24 = bookECorrelator <2,4>("ec24",hc24); 4 ... 5 ec22 ->fill (...); 6 ec24 ->fill (...); 7 ... 8 // c_n {4} = <<4>>_{n,-n} - 2 * <<2>>_{n,-n} 9 cnFourInt(hc24 , ec22 , ec24); 11

  15. b b b b b b b b b b b b b b b b b b b Sample results • Some HI analyses implemented, here: ALICE 2016 I1419244 . • Correlators and cumulants can be plotted, also without data. • Data not well reproduced by this MC. Flow coefficient v 2 { 2 } with | ∆ η | > 1. v 2 { 2, | ∆ η | > 1. } Data 0 . 1 MC 0 . 08 << 2 >> 2, − 2 , | ∆ η > 1. | 0 . 06 << 2 >> 2, − 2 0 . 0012 MC (no data) 0 . 04 0 . 001 0 . 02 0 . 0008 0 1 . 4 0 . 0006 1 . 2 MC/Data 1 0 . 0004 0 . 8 0 . 6 0 . 0002 0 . 4 0 . 2 0 0 10 20 30 40 50 70 0 10 20 30 40 50 70 60 80 60 80 Centrality percentile [%] Centrality percentile [%] 12

  16. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Perspective: HI methods in pp (CMS: Evidence for collectivity in pp collisions at the LHC) • Heavy ion methods also available for pp analyses. • Allows for new types pp analyses in Rivet. • Example: CMS 2017 I1471287 . c 2 { 2, | ∆ η > 2 |} ( 0.3 GeV < p ⊥ < 3 GeV ) √ s = 13 TeV v 2 { 2, | ∆ η > 2 |} ( N ch < 20 ) √ s = 13 TeV 0 . 006 V 2 ∆ v 2 { 2, | ∆ η > 2 |} 0 . 8 Data Data 0 . 005 0 . 7 MC MC 0 . 6 0 . 004 0 . 5 0 . 003 0 . 4 0 . 3 0 . 002 0 . 2 0 . 001 0 . 1 0 0 1 . 4 1 . 4 1 . 3 1 . 3 MC/Data 1 . 2 MC/Data 1 . 2 1 . 1 1 . 1 1 1 0 . 9 0 . 9 0 . 8 0 . 8 0 . 7 0 . 7 0 . 6 0 . 6 0 . 5 0 . 5 20 40 80 100 120 140 0 1 2 3 4 5 60 160 N ch ( | η | < 2.4, p ⊥ > 0.4 GeV) p ⊥ [GeV] • (subtraction procedures still unclear – analyser help needed!) 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend