risk modelling in insurance
play

Risk Modelling in Insurance Hansj org Albrecher Radon Institute, - PowerPoint PPT Presentation

Risk Modelling in Insurance Hansj org Albrecher Radon Institute, Austrian Academy of Sciences and University of Linz, Austria hansjoerg.albrecher@oeaw.ac.at Tutorial for the Special Semester on Stochastics with Emphasis on Finance, RICAM,


  1. Risk Modelling in Insurance Hansj¨ org Albrecher Radon Institute, Austrian Academy of Sciences and University of Linz, Austria hansjoerg.albrecher@oeaw.ac.at Tutorial for the Special Semester on Stochastics with Emphasis on Finance, RICAM, Linz September 3, 2008

  2. Typical Questions in Insurance ◮ Which risks can be insured? ◮ Determination of fair premiums ◮ Stability of insurance activity

  3. Program ◮ Some Generalities ◮ Aggregate Claim Distributions ◮ Collective Risk Models ◮ Extensions (Dividends, Taxes, Dependence) ◮ Statistical Issues Collection of ideas and approaches, not exhaustive treatment!

  4. Insurance Portfolio Premium Income P ( t ) Claim Payments X 1 + X 2 + · · · + X N ( t ) Initial Capital x Reserve at time t : N ( t ) � R ( t ) = x + P ( t ) − X i i =1 − → Diversification (in the collective, over time,..) Quantitative Approach: Risk Theory (Modelling, Measuring Risk, Control)

  5. Risk Y (random variable) Examples of Measures of Risk ◮ E ( Y ) , Var ( Y ) √ E ( Y ) , skewness S ( Y ) = E (( Y − E ( Y )) 3 ) Var Y ◮ CoV( Y ) = (Var( Y )) 3 / 2 ◮ Value at Risk: VaR α ( Y ) = q α = inf { y | F Y ( y ) ≥ α } − → Capital requirements (Basel II, Solvency II) (normal distribution) ◮ Coherent Risk Measures (Axioms) ◮ Expected Shortfall: � 1 1 ES α ( Y ) = E [ Y | Y > q α ] = α VaR s ds 1 − α (e.g. Swiss Solvency Test)

  6. Crucial: Distribution of Aggregate Claims X ( t ) = � N ( t ) n =1 X n Individual Model � n i =1 X i : ◮ Single payments X i ≥ 0 with F i ( x ) = P ( X i ≤ x ) (policy i ) ◮ X i independent, distribution identical or volume-dependent ◮ Convolutions! � x P ( X 1 + X 2 + .. + X n < x ) := F ∗ n ( x ) = F ∗ ( n − 1) ( x − s ) dF 1 ( s ) 0 � x P ( X 1 + X 2 < x ) = F 2 ( x − s ) dF 1 ( s ) 0 Explicit e.g. for ◮ Gamma distribution: α α µ α Γ( α ) x α − 1 exp( − x α/µ ) , f ( x ) = x > 0 ◮ Inverse Gauss distribution: � µα � � µ/ x ) 2 � � f ( x ) = 2 π x 3 exp − α/ 2( x /µ − , x > 0

  7. Aggregate portfolio usually inhomogeneous! What matters: aggregate claim distribution ◮ Collective Model � N ( t ) i =1 X i , N ( t ) .. claim number, X i iid (d.f. F , “mixed distribution”, reliable estimate) Modelling N (1): e.g. ◮ Poisson distribution: P ( N (1) = n ) = e − λ λ n / n ! , n = 0 , 1 , .. ◮ Mixed Poisson, e.g. negative binomial: � α + n − 1 � p α (1 − p ) n , P ( N (1) = n ) = n = 0 , 1 , .. n

  8. Models for Claim Sizes: Heavy Tails: “Few claims determine aggregate claim size” Candidates: e.g. ◮ (Heavy-Tailed) Weibull: f ( x ) = bx b − 1 exp( − x b ) , x > 0 , 0 < b < 1 . All Moments exist ◮ Lognormal: log X i ∼ N ( µ, σ 2 ) f ( x ) = x − 1 (2 πσ 2 ) − 1 / 2 exp( − (log( x ) − µ ) 2 / (2 σ 2 )) , x > 0 , µ ∈ R , σ 2 > 0 . All Moments exist ◮ Pareto: « α „ b F ( x ) = 1 − , x ≥ b > 0 , α > 0 x resp. Shifted Pareto E ( X β ) < ∞ ⇔ β < α Subexponential Class F ∈ S : P ( X 1 + X 2 + . . . + X n > x ) ∼ n (1 − F ( x )) ∀ n ≥ 2 as x → ∞ .

  9. Aggregate Claims X ( t ) = � N ( t ) n =1 X n , X i iid, independent of N ( t ) � ∞ ˆ F ( s ) := E ( e − sX n ) = 0 e − sx dF ( x ), n =0 p n ( t ) z n with p n ( t ) = P ( N ( t ) = n ) Q t ( z ) := E ( z N ( t ) ) = � ∞ G t ( x ) := P { X ( t ) ≤ x } = � ∞ n =0 p n ( t ) F ∗ n ( x ) ∞ p n ( t )ˆ F n ( s ) = Q t (ˆ E [ e − sX ( t ) ] = � F ( s )) n =0 → Moments of X ( t ): E ( X ( t )) = E ( N ) E ( X n ), Var ( X ( t )) = Var ( N ( t )) E 2 ( X n ) + E ( N ( t )) Var ( X n ), etc.

  10. Approximations for X ( t ) ◮ Moment matching „ « x − E [ X ( t )] ◮ Normal Approximation G t ( x ) ≈ Φ √ Var [ X ( t )] ◮ Shifted Gamma, etc. ◮ Edgeworth approximation, orthogonal polynomials ◮ Discretization of claim sizes → recursive methods (Panjer recursions, FFT etc.) ◮ Asymptotic approximations ◮ Subexponential Claims ◮ Superexponential Claims Also useful in modelling credit risk, operational risk etc.

  11. Asymptotic Approximations of G t ( x ) - Subexponential X n If E ( z N ( t ) ) < ∞ for some z > 1: ∞ X G t ( x ) = P ( X 1 + . . . + X N ( t ) > x ) = P ( N ( t ) = n ) F ∗ n ( x ) n =0 ∞ X ∼ P ( N ( t ) = n ) n F ( x ) = E ( N ( t )) F ( x ) n =0 ◮ Simple! Useful for relevant range of x ? 1.0 � 2.0 upper bound upper bound lower bound 0.8 F ( x ) = x − 3 . 3 , N ∼ Poisson(2), � 2.5 a 1 lower bound 0.6 a 2 a 1 � 3.0 a 3 0.4 a 2 � 3.5 a 3 0.2 � 4.0 10 15 20 25 10 15 20 25 Higher-order Approximations Under suitable conditions a k ( x ) = a 1 ( x ) + P k j =1 A j f ( j ) ( x ) , Improvement in certain parameter ranges.

  12. Asymptotic Approximations of G t ( x ) - Superexponential X n Saddlepoint approximations t κ t ( α ) := log E ( e α S t ) Consider the tilted probability measure P α ( S t ∈ dx ) = E ( e α S t − t κ t ( α ) 1 { S t ∈ dx } ) , Choice of α = α ( x ): E α ( S t ) = t κ ′ t ( α ) = x , As x → ∞ , α approaches right abscissa of convergence α 0 = sup { α : κ t ( α ) < ∞} , given that lim α → α 0 κ ′ t ( α ) = ∞ . Var α ( S t ) = t κ ′′ t ( α ) ! St − x < y → Φ( y ) P α q t κ ′′ t ( α ) e − α ( x ) x + κ t ( α ( x )) = ⇒ 1 − G t ( x ) ∼ as x → ∞ . � 2 π κ ′′ α ( x ) t ( α ( x ))

  13. Asymptotic Approximations of G t ( x ) - Superexponential X n II Z ∞ e −| θ | v { M θ ( x + v ) − M θ ( x ) } dv 1 − G t ( x ) = | θ | e −| θ | x 0 − σ F < θ < 0 with M θ ( x ) := P ∞ n =0 a n F ∗ n θ ( x ) and a n := ˆ F n ( θ ) p n ( t ) 1 s If a ( x ) := a [ x ] ∈ R as x ↑ ∞ : 1 − G t ( x ) ∼ e −| θ | x a ( x , θ ) Appropriate choice of θ ! „ α + n − 1 « ` ´ n . ´ α ` b t Example: Pascal process : p n ( t ) = t + b t + b n ! α 1 F ( θ ) = 1 + b b | θ | Γ( α ) e −| θ | x x α − 1 . ˆ ⇒ 1 − G t ( x ) ∼ | t ˆ t ′ ( θ ) | F

  14. A “Robust” View: Classical Collective Risk Model reserve R t claims ~ F(y) premiums N ( t ) � R t = x + c t − X n n =1 x ruin t time N ( t ). . . homogeneous Poisson process ( λ ) X n . . . iid random variables (d.f. F ) c . . . premium density Ruin Probability ψ ( x , T ) = P ( inf 0 ≤ t ≤ T R t < 0 | R 0 = x )

  15. A “Robust” View: Classical Collective Risk Model reserve R t claims ~ F(y) premiums N ( t ) � R t = u + c t − X n n =1 u ruin t time Generalizations: ◮ more general point processes ◮ inflation, interest on the surplus, dividend and tax payments ◮ investment in financial market, reinsurance ◮ delay in claim settlement, dependency

  16. Solution Methods ◮ Exact Solutions ((P)IDE) Infinite time horizon: CP � x c ∂ψ ∂ x − λ ψ + λ ψ ( x − y ) dF ( y ) + λ (1 − F ( x )) = 0 0 with x →∞ ψ ( x ) = 0. lim � ∞ � n � � λµ 1 − λµ � (1 − F n ∗ ψ ( x ) = I ( x )) , c c n =1 � x with F I ( x ) = 1 0 (1 − F X ( y )) dy , x ≥ 0. µ Examples: c e − c − λµ ◮ X i ∼ Exp(1 /µ ): ψ ( x ) = λµ x c µ ◮ X i ∼ Phase-Type

  17. Solution Methods ◮ Exact Solutions ((P)IDE) Finite time horizon: CP � x c ∂ψ ∂ x − ∂ψ ∂ T − λ ψ + λ ψ ( x − y , T ) dF ( y ) + λ (1 − F ( x )) = 0 0 with x →∞ ψ ( x , T ) = 0 ( T ≥ 0) and ψ ( x , 0) = 0 ( x ≥ 0) lim

  18. Solution Methods ◮ Exact Solutions ((P)IDE) Finite time horizon with positive interest rate: CP Z x ( c + i x ) ∂ψ ∂ x − ∂ψ ∂ T − λ ψ + λ ψ ( x − y , T ) dF ( y ) + λ (1 − F ( x )) = 0 0 with x →∞ ψ ( x , T ) = 0 ( T ≥ 0) and ψ ( x , 0) = 0 ( x ≥ 0) lim i ..real interest force ψ ( x , t ) = a 0 ( t ) + P k E.g. λ = k i , X ∼ Exp ( α ): Gamma Series Expansion n =1 a n ( t )Γ( x ; α, n ) Z u α n y n − 1 e − α y dy with Γ( x ; α, n ) = ( α > 0 , n > 0) Γ( n ) 0 n − 1 ( α x ) j ∂ Γ( x ; α, n ) “ ” Γ( x ; α, n ) = 1 − e − α x X n ∈ N : , = α Γ( x ; α, n − 1) − Γ( x ; α, n ) j ! ∂ x j =0 Recurrence equation 1 “ ( λ + α c − i n ) a n ( t ) + a ′ ” a n +1 ( t ) = n ( t ) + ( i ( n − 1) − λ ) a n − 1 ( t ) α c 1 a ′ a 1 ( t ) = ` 0 ( t ) + λ a 0 ( t ) ´ , a 0 ( t ) = U (0 , t ) α c

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend