riken bnl
play

RIKEN BNL Research Center 2018-06-18, Second Plenary Workshop of - PowerPoint PPT Presentation

Interplay between Lattice and { Model and/or Dispersive Representation } for g-2 HLbL Tom Blum, Norman Christ, Masashi Hayakawa, Taku Izubuchi, Luchang Jin, Chulwoo Jung, Chrisoph Lehner (RBC&UKQCD) RIKEN BNL Research Center


  1. Interplay between Lattice and { Model and/or Dispersive Representation } for g-2 HLbL Tom Blum, Norman Christ, Masashi Hayakawa, Taku Izubuchi, Luchang Jin, Chulwoo Jung, Chrisoph Lehner (RBC&UKQCD) RIKEN BNL Research Center 2018-06-18, “Second Plenary Workshop of the Muon g-2 Theory IniBaBve” Mainz, Germany 1

  2. Introduction [ HVP: Bernecker Meyer 2011] 2

  3. Sweat spots of Lattice vs DR/Model n Lattice, after take continuum/infinite volume limits with all disconnected, short distance (high energy) : less noisy long distance (low energy) : very noisy n DR / Model ( or experiments ) heavy particle / multiple hadron : less control light particle, pi0 pole or pion-loop : well controlled -> Could cover sweat spots complementarily ? n For HVP , a good comparison/interplay is done in Eucliean coordinate space [ Christoph Lehner’s talk ] 3

  4. First try [ Luchang Jin’s talk ] n LMD model in coordinate space n Fixed min {|x-y|,|x-z|,|y-z| } < R(min) n Plot as function of max {|x-y|,|x-z|,|y-z| } = R(max) n L = 9.6 fm, a=0.1fm, Nf=2+1 physical pion mass n Subtracted lepton part (to isolate the long-distant part in this exercise) n Connected only. Model is multiplied by 34/9 according to conn:disconn = 34:(-25) from charge factors 4

  5. HLbL point source method [L. Jin et al. 1510.07100] • Anomalous magnetic moment, F 2 ( q 2 ) at q 2 ! 0 limit ( q 2 = 0) F cHLbL P ( � s 0 ,s ) i x,y,z,x op 0) F C 2 u s 0 ( ~ k ( x, y, z, x op ) u s ( ~ = ✏ i,j,k ( x op � x ref ) j · i ¯ 0) 2 2 V T m • Stochastic sampling of x and y point pairs. Sum over x and z . F C ( � ie ) 6 G ⇢ , � ,  ( x, y, z ) H C ⌫ ( x, y, z, x op ) = ⇢ , � ,  , ⌫ ( x, y, z, x op ) , x op , ν y x x, ρ y, σ z, κ z α , ρ α , ρ η , κ t src η , κ t snk x src x snk β , σ β , σ 5

  6. cHLbL Subtraction using current conservation • From current conservation, 0 , and mass gap, ∂ ρ V ρ ( x ) = h xV ρ ( x ) O (0) i ⇠ | x | n exp( � m π | x | ) H C X X ρ , σ , κ , ν ( x, y, z, x op ) = h V ρ ( x ) V σ ( y ) V κ ( z ) V ν ( x op ) i = 0 x x X H C ρ , σ , κ , ν ( x, y, z, x op ) = 0 z at V ! 1 and a ! 0 limit (we use local currents). • We could further change QED weight G (2) G (1) ρ , σ , κ ( x, y, z ) � G (1) ρ , σ , κ ( y, y, z ) � G (1) ρ , σ , κ ( x, y, y ) + G (1) ρ , σ , κ ( x, y, z ) = ρ , σ , κ ( y, y, y ) without changing sum P ρ , σ , κ , ν ( x, y, z, x op ) . x,y,z G ρ , σ , κ ( x, y, z ) H C • Subtraction changes discretization error and finite volume error. • Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller. • Also now G (2) σ , κ , ρ ( z, z, x ) = G (2) σ , κ , ρ ( y, z, z ) = 0 , so short distance O ( a 2 ) is suppressed. • The 4 dimensional integral is calculated numerically with the CUBA library cubature ( x, y, z ) is represented by 5 parameters, compute on N 5 grid points and rules. interpolates. ( | x � y | < 11 fm). 6

  7. Integrand : Lattice vs LVD (preliminary) R min = 1.0 fm 7 Pion TFF sub Pion TFF no-sub 6 Lattice 48D sub integrand F 2 (0) (10 − 10 ) 5 Lattice 48D no-sub 4 3 2 1 0 − 1 − 2 0 1 2 3 4 5 6 7 8 R max (fm) 7

  8. Integrand (preliminary) R(min) = 1.0 fm 1.4 Pion TFF sub Lattice 48D sub 1.2 integrand F2(0) (1e-10) 1 0.8 0.6 0.4 0.2 0 -0.2 0 1 2 3 4 5 6 7 8 R(max) (fm) model integral is extrapolated to con2nuum/infinite volume limits extrapola2ons to be scru2nized 8

  9. Patch-up example Preliminary 48D R(min) = 0.5 fm 50 Pion TFF sub Lattice 48D sub 40 Combine sub F2(0) (1e-10) 30 20 10 0 -10 0 1 2 3 4 5 6 7 8 R(max) (fm) Switching point ( long: model, short: lattice ) 9

  10. Preliminary 48D R(min) = 1.0 fm 50 Pion TFF sub Lattice 48D sub 40 Combine sub F2(0) (1e-10) 30 20 10 0 -10 0 1 2 3 4 5 6 7 8 R(max) (fm) 10

  11. Preliminary 48D R(min) = 2.0 fm 50 Pion TFF sub Lattice 48D sub 40 Combine sub F2(0) (1e-10) 30 20 10 0 -10 0 1 2 3 4 5 6 7 8 R(max) (fm) 11

  12. Preliminary 48D R(min) = 5.0 fm 50 Pion TFF sub Lattice 48D sub 40 Combine sub F2(0) (1e-10) 30 20 10 0 -10 0 1 2 3 4 5 6 7 8 R(max) (fm) 12

  13. Is this safe ? n At given distance, there are other than pi0 contribution in DR and models [ truncation ] n Probably not large for appropriate choice n To be safer, we could try to consider subtracting pi0 contribution from Lattice GH = GH(Lat; all) - GH(Lat; pi0) + GH(DR; pi0) n How to compute GH(Lat; pi0) is non-trivial 13

  14. Similar problem in tau HVP [ Hiroshi Ohki et al. arXiv:1803.07228 ] n In case of Vus analysis of tau -> up-strange inclusive hadronic decay n We subtract K-pole contribution from lattice by fitting HVP in the on-shell long-distance, and evaluate the rest: C(t) = A exp(- mK t) + rest( t ) [ A, mK is from fit ] ( also tau-input for g-2 : [ Mattia Brunno’s talk ]) 14

  15. Tau decay ν τ ν τ { } hadrons Im s τ − τ − s • W − W − ¯ ¯ u u V-A current � (Hadronic) vacuum polarization function Π ( Q 2 ) • Experiment side : τ → ν + had through V-A vertex. EW correction S EW Γ ( τ − → hadrons ij ν τ ) R ij = Γ ( τ − → e − ¯ ν e ν τ ) Z m 2 ✓ ◆ ✓ ◆ � 12 π | V ij | 2 S EW s 1 + 2 s τ Im Π (1) ( s ) + Im Π (0) ( s ) = 1 − m 2 m 2 m 2 0 τ τ τ | {z } ≡ Im Π ( s ) • Lattice side : The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) current- current two point Z d 4 xe iqx D E Π µ ν ij ; V/A ( q 2 ) = i 0 | T J µ ij ; V/A ( x ) J † µ ij ; V/A (0) | 0 = ( q µ q ν − q 2 g µ ν ) Π (1) ij ; V/A ( q 2 ) + q µ q ν Π (0) ij ; V/A 15

  16. τ inclusive decay experiments To compare with experiments, ✓ ◆ � 1 + 2 s a conventional value of |Vus|=0.2253 is used ρ ( s ) ≡ | V us | 2 Im Π 1 ( s ) + Im Π 0 ( s ) ˜ m 2 τ 1 - π 0 , K 0 π - (Adematz) Belle K 0 π - π 0 Belle K - π + π - BaBar K - 2 π , Κ (3 − 5) π ,K η 0.1 ALEPH K pQCD, D=0 OPE (nf=3) 0.01 [K. Maltman ] 0.001 s )˜ ρ ( s ) 0.0001 1e-05 0 1 2 3 4 2 ] s [GeV γ K ω ( m 2 For K pole, we assume a delta function form K ) γ K ∼ 2 | V us | 2 f 2 obtained from either experimental value of K→μ or τ→k decay width. K γ K [ τ → K ν τ ] =0 . 0012061(167) exp (13) IB [HFAG16] 8 γ K [ K µ 2 ] =0 . 0012347( 29) exp (22) IB [PDG16] 16

  17. Pi0 subtraction on Lattice [ N. Christ et al @ UConn ] 17

  18. [ also Luchang Jin’s talk ] 18

  19. Lattice implementation n lattice pi0-gamma-gamma FF could be computed separately, and if it’s accurately determined, we could replace for long-distance of the full HLbL n Or compute pi0-pole contribution simultaneously with the full HLbL on the same ensemble and subtract under the jack-knife 19

  20. Discussion n Interplay b/w Lattice and DR/model is a useful “plan-B” for HVP . Could we apply to HLbL ? n Lattice : disconnected, continuum/infinite V limit n Another interplay for HLbL possible ? n How about the box diagram in DR ? n Sum-rule for the full HLbL from Lattice to constraint DR or model ? Int[ pole, cuts in DR ] = Int[ Euclidean Amp ] n Use of GEVP in subtracting pi0 or other specific contribution ? [ A. Meyer’s talk ] 20

  21. Finite Energy Sum Rule (FESR) [Shifman, Vainshtein, and Zakharov ’79] The finite energy sum rule (FESR) � s 0 ω ( s ) ρ ( s ) ds = − 1 � ω ( s ) Π ( s ) ds, ( s 0 : finite energy) 2 π i 0 | s | = s 0 w(s) is an arbitrary regular function such as polynomial in s. • LHS : spectral function ρ(s) is related to the experimental τ inclusive decays ◆ 2 ✓ =12 π 2 | V us | 2 S EW dR us ; V/A ✓ ◆ � 1 − s 1 + 2 s Im Π 1 ( s ) + Im Π 0 ( s ) ds m 2 m 2 m 2 τ τ τ Im(s) pQCD ✓ ◆ � 1 + 2 s ρ ( s ) ≡ | V us | 2 Im Π 1 ( s ) + Im Π 0 ( s ) ˜ m 2 τ Re(s) • RHS … Analytic calculation ���������������������������������������������������������������������������������� s 0 s th with perturbative QCD (pQCD) and OPE 4 τ experiment 21

  22. Our new method : Combining FESR and Lattice • If we have a reliable estimate for Π ( s ) in Euclidean (space-like) points, s = − Q 2 k < 0 , we could extend the FESR with weight function w ( s ) to have poles there, Np Z ∞ X w ( s ) Im Π ( s ) = π Res k [ w ( s ) Π ( s )] s = − Q 2 Our strategy k sth k If we have a reliable estimate for Π(s) in Euclidean (space-like) points, ✓ 1 + 2 s ◆ we could extend the FESR with weight function w(s) to have N poles there, Im Π (1) ( s ) + Im Π (0) ( s ) ∝ s ( | s | → ∞ ) Π ( s ) = m 2 τ • For N p ≥ 3 , the | s | → ∞ circle integral vanishes. (generalized dispersion relation ) Im( s ) pQCD OPE spectral data Im(s) Im(s) pQCD Lattice HVP Re(s) Re(s) Re( s ) XXX s 0 s th Lattice HVPs τ experiment τ experiment & pQCD 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend