right invertible analytic toeplitz operators and optimal
play

Right invertible analytic Toeplitz operators and optimal solutions - PowerPoint PPT Presentation

Right invertible analytic Toeplitz operators and optimal solutions to the rational Corona-Bezout equation Rien Kaashoek, VU Amsterdam Workshop in honor of Bill Helton Best wishes for Bill and many happy returns Corona-Bezout equation ( ) G


  1. Right invertible analytic Toeplitz operators and optimal solutions to the rational Corona-Bezout equation Rien Kaashoek, VU Amsterdam Workshop in honor of Bill Helton

  2. Best wishes for Bill and many happy returns

  3. Corona-Bezout equation ( ∗ ) G ( z ) X ( z ) = I m , z ∈ D Given: G ( z ) an m × p matrix-valued H ∞ function, m ≤ p . Problem: Find p × m matrix-valued H ∞ functions X such that ( ∗ ) holds. Condition for solvability: G ( z ) G ( z ) ∗ ≥ δ > 0 for each | z | < 1. Carleson 1962 – scalar case ( m = 1) Fuhrmann 1968 – matrix case ( m > 1) See Section 5B in Helton’s CBMS lecture notes for further info and references.

  4. Rational Corona-Bezout equation ( ∗ ) G ( z ) X ( z ) = I m Given: G ( z ) stable rational m × p matrix function, m ≤ p G ( z ) = D + zC ( I n − zA ) − 1 B , A stable Problem: Find stable rational matrix functions X such that ( ∗ ) holds, preferable in state space form. Condition for solvability: G ( z ) has full column rank for each | z | ≤ 1 ( ⇔ Carleson’s condition). Necessity obvious. Sufficiency: use Smith McMillan form   ρ 1 ( z ) 0 · · · 0 . . ... . . G ( z ) = U ( z )  V ( z )   . .  ρ m ( z ) 0 · · · 0

  5. Smith McMillan form:   ρ 1 ( z ) 0 · · · 0 . . ... . . G ( z ) = U ( z )  V ( z )   . .  ρ m ( z ) 0 · · · 0 ρ 1 ( z ) − 1   ...      ρ m ( z ) − 1  X ( z ) = V ( z ) − 1 U ( z ) − 1     0 · · · 0    . .  . .   . .   0 · · · 0 Then X is a stable rational matrix solution of G ( z ) X ( z ) = I m . [Smith-McMillan forms are not numerically viable.]

  6. Right invertible analytic Toeplitz operators G ( z ) stable rational m × p matrix function, m ≤ p T G the Toeplitz operator defined by G :   G 0 G 1 G 0    : ℓ 2 + ( C p ) → ℓ 2 + ( C m ) . T G =   G 2 G 1 G 0    . . . ... . . . . . . G ( z ) X ( z ) = I m ⇒ T G T X = T GX = I ℓ 2 + ( C m ) ⇒ T G right invertible

  7. Right invertible analytic Toeplitz operators – continued Conversely, if T G is right invertible, then T G T ∗ G is invertible and X defined by   I m 0   G ) − 1 [ F C p Fourier transform] X = F C p T ∗ G ( T G T ∗   0    .  . . is an H 2 solution. Indeed,     I m I m 0 0     G ) − 1 G ) − 1 ( GX )( · ) = G F C p T ∗ G ( T G T ∗  = F C m T G T ∗ G ( T G T ∗  = I m .     0 0      .  . . . . .

  8.   I m 0   G ) − 1 X = F C p T ∗ G ( T G T ∗   0    .  . . This H 2 solution has two special properties: (1) X is the least squares solution, and (2) X is rational. Property (1) means that for any other solution V we have � 2 π � 2 π 1 X ( e it ) ∗ X ( e it ) dt ≤ 1 V ( e it ) ∗ V ( e it ) dt . 2 π 2 π 0 0 G ) − 1 is the Moore-Penrose right inverse Reason for (1) : T ∗ G ( T G T ∗ of T G . The fact that X is rational is less trivial. Questions: How to compute X ? State space formula for X ?

  9. Inverting T G T ∗ G z − 1 ) ∗ , and put Set R ( z ) = G ( z ) G ∗ ( z ), where G ∗ ( z ) = G (¯     R 0 R − 1 R − 2 · · · G 1 G 2 G 3 · · · R 1 R 0 R − 1 · · · G 2 G 3 G 4 · · ·     T R =  , H G =  .     R 2 R 1 R 0 · · · G 3 G 4 G 5 · · ·      . . .  . . . ... ... . . . . . . . . . . . . T R = T G T ∗ G + H G H ∗ G PROP. The operator T G T ∗ G is invertible if and only if G T − 1 (i) T R is invertible and (ii) I − H ∗ R H G is invertible. In that case G ) − 1 = T − 1 + T − 1 G T − 1 R H G ) − 1 H ∗ G T − 1 ( T G T ∗ R H G ( I − H ∗ R . R

  10. First step: inverting T R [a classical topic] R ( z ) = G ( z ) G ∗ ( z ), where G ( z ) = D + zC ( I n − zA ) − 1 B . Thus R 0 = DD ∗ + CPC ∗ , − j = CA j − 1 Γ for j = 1 , 2 , 3 , . . . R j = R ∗ P − APA ∗ = BB ∗ and Γ = BD ∗ + APC ∗ . THM. The Toeplitz operator T R is invertible if and only if the discrete algebraic Riccati equation Q = A ∗ QA + ( C − Γ ∗ QA ) ∗ ( R 0 − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ) (ARE) has a ( unique ) stabilizing solution Q, that is, R 0 − Γ ∗ Q Γ is positive definite, Q is an n × n matrix satisfying ( ∗ ) and the matrix A − Γ( R 0 − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ) is stable

  11. First step: inverting T R – continued THM. The Toeplitz operator T R is invertible if and only if Q = A ∗ QA + ( C − Γ ∗ QA ) ∗ ( R 0 − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ) (ARE) has a ( unique ) stabilizing solution Q. In that case � � T − 1 I m − zC 0 ( I n − zA 0 ) − 1 Γ ∆ − 1 , where = T Ψ T ∗ Ψ , Ψ( z ) = R C 0 = ( R 0 − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ) , A 0 = A − Γ C 0 , ∆ = ( R 0 − Γ ∗ Q Γ) 1 / 2 .   C CA   obs T − 1 N.B.: Q = W ∗ R W obs , where W obs =  .   CA 2    . . .

  12. Second step: computing T − 1 G T − 1 G T − 1 R H G ( I − H ∗ R H G ) − 1 H ∗ R THM. Let Q be the stabilizing solution of the Riccati equation Q = A ∗ QA + ( C − Γ ∗ QA ) ∗ ( R 0 − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ) . (ARE) G T − 1 Then I − H ∗ R H G is invertible if and only if I n − PQ is non-singular, where P − APA ∗ = B. In that case T − 1 G T − 1 G T − 1 R H G ) − 1 H ∗ = K ( I n − PQ ) − 1 PK ∗ , R H G ( I − H ∗ R where   C 0 C 0 A 0    : C n → ℓ 2 + ( C m ) . K =  C 0 A 2    0  . . . G ) − 1 = T Ψ T ∗ Ψ + K ( I n − PQ ) − 1 PK ∗ . Conclusion: ( T G T ∗

  13. First main theorem – [Frazho-K-Ran, 2010] THM 1. Equation G ( z ) X ( z ) = I m has a stable rational matrix solution if and only if the corresponding Riccati equation (ARE) has a stabilizing solution Q, and I n − PQ is non-singular, where P − APA ∗ = B. In that case the least squares solution is the rational matrix function X is given by � � I p − zC 1 ( I n − zA 0 ) − 1 ( I n − PQ ) − 1 B X ( z ) = D 1 , where A 0 = A − Γ( R 0 − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ) , C 1 = D ∗ C 0 + B ∗ QA 0 , with C 0 = ( R 0 − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ) , D 1 = ( D ∗ − B ∗ Q Γ)( R 0 − Γ ∗ Q Γ) − 1 + C 1 ( I n − PQ ) − 1 PC ∗ 0 . In particular, X is rational, and the McMillan degree of X ≤ the McMillan degree of G.

  14. The null space of T G Assume T G is surjective. General H ∞ theory tells us: ◮ Beurling-Lax: Ker T G = T Θ ℓ 2 + ( C k ), Θ inner, p × k . ◮ k = p − m . ◮ Θ(0) one to one. ◮ T Θ T ∗ G ) − 1 T G Θ = I ℓ 2 + ( C p ) − T ∗ G ( T G T ∗ Hence     I p I p 0 0 Θ( · )Θ(0) ∗ = F C p T Θ T ∗     G ) − 1 T G  = I p − F C p T ∗ G ( T G T ∗     0 0 Θ     . .    . . . . Θ(0) ∗ � � − 1 � � Θ(0) Θ(0) ∗ Θ(0) = I k

  15. Second main theorem – [Frazho-K-Ran, 2010] THM 2. [Frazho-K-Ran, 2010] Assume T G is surjective. Then Ker T G = T Θ ℓ 2 + ( C p − m ) , where Θ is given by � � I p − zC 1 ( I n − zA 0 ) − 1 ( I n − PQ ) − 1 B ˆ Θ( z ) = D . Here A 0 and C 1 are as in THM 1 , and ˆ D is any one-to-one p × ( p − m ) matrix such that D ∗ = I p − ( D ∗ − B ∗ Q Γ)( R 0 − Γ ∗ Q Γ) − 1 ( D − Γ ∗ QB )+ D ˆ ˆ − B ∗ QB − C 1 ( I n − PQ ) − 1 PC ∗ 1 . Furthermore, ˆ D is uniquely determined up to a constant unitary matrix on the right, Θ is inner and rational, and the McMillan degree of Θ is less than or equal to the McMillan degree of G.

  16. Example � � 1 � � � � G ( z ) = 1 + z − z . Obviously, 1 + z − z = 1 . 1 A minimal realization of G is given by � � � � A = 0 , B = 1 − 1 C = 1 , D = 1 0 , . Solution Stein equation: P = 2. Since G ( z ) G ∗ ( z ) = 3 + z + z − 1 , the corresponding Riccati equation is 1 Q = 3 − Q , √ and the stabilizing solution is given by Q = 1 2 (3 − 5). We see √ that 1 − PQ = 5 − 2 � = 0, as expected.

  17. Example – continued � � G ( z ) = 1 + z − z . Least squares solution of G ( z ) X ( z ) = 1: √ � 1 − Q � Q 1 − 2 Q (1 + zQ ) − 1 , where Q = 1 X ( z ) = 2 (3 − 5) . Q All stable rational 2 × 1 matrix solutions of G ( z ) V ( z ) = 1 are given by V ( z ) = X ( z ) + Θ( z ) ϕ ( z ), where ϕ is any scalar stable rational function and √ � � z � Q (1 + zQ ) − 1 , where Q = 1 Θ( z ) = 2 (3 − 5) . 1 + z

  18. Final remarks Ongoing work: Rational matrix solutions, optimal or suboptimal, in the H ∞ norm. Put γ ∞ = inf {� X � ∞ | G ( z ) X ( z ) = I m , X is H ∞ function } . Question: Does there exists a stable rational p × m matrix solution X with tolerance γ > γ ∞ , that is, � X � ∞ < γ ? New discrete algebraic Riccati equation: Q = A ∗ QA + ( C − Γ ∗ QA ) ∗ ( R 0 − γ − 2 I m − Γ ∗ Q Γ) − 1 ( C − Γ ∗ QA ). THM. [Frazho-ter Horst-K] Let γ > 0 be given. Then γ > γ ∞ if and only if the above Riccati equation has a stabilizing solution Q = Q γ such that r spec ( PQ γ ) < 1 . N.B. The proof uses the formula for the central solution in the commutant lifting theorem.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend