riccardo catena
play

Riccardo Catena Institut fr Theoretische Physik, Heidelberg - PowerPoint PPT Presentation

The local dark matter halo density Riccardo Catena Institut fr Theoretische Physik, Heidelberg 17.05.2010 R. Catena and P . Ullio, arXiv:0907.0018 [astro-ph.CO]. To be published in JCAP Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 1 /


  1. The local dark matter halo density Riccardo Catena Institut für Theoretische Physik, Heidelberg 17.05.2010 R. Catena and P . Ullio, arXiv:0907.0018 [astro-ph.CO]. To be published in JCAP Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 1 / 25

  2. Overview/Motivations - Direct detection signals depend from dark halo properties. - Example : Spin-independent dark matter-nucleus scattering. - The expected event rate reads Z ∞ dE r = σ p ρ DM ( R 0 ) dR f DM ( v , t ) dv � A 2 F 2 ( E r ) � p , DM m DM v 2 µ 2 v min - It crucially depends on ρ DM ( R 0 ) (this talk) and f DM ( � v , t ) . Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 2 / 25

  3. Outline The underlying Galactic Model 1 The experimental constraints 2 The method:Bayesian inference with Markov Chain Monte Carlo 3 Results and Conclusions 4 Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 3 / 25

  4. Outline The underlying Galactic Model 1 The experimental constraints 2 The method:Bayesian inference with Markov Chain Monte Carlo 3 Results and Conclusions 4 Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 3 / 25

  5. Outline The underlying Galactic Model 1 The experimental constraints 2 The method:Bayesian inference with Markov Chain Monte Carlo 3 Results and Conclusions 4 Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 3 / 25

  6. Outline The underlying Galactic Model 1 The experimental constraints 2 The method:Bayesian inference with Markov Chain Monte Carlo 3 Results and Conclusions 4 Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 3 / 25

  7. The underlying Galactic Model Dark Halo Thick Disk Gas + Fluctuations Thin Disk Bulge/Bar Figure: Schematic representation of the Galaxy Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 4 / 25

  8. The underlying Galactic Model Dark Halo Thick Disk Gas + Fluctuations Thin Disk Bulge/Bar Figure: Schematic representation of the assumed Galactic model Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 5 / 25

  9. The underlying Galactic Model - The stellar disk: � z ρ d ( R , z ) = Σ d � e − R with R < R dm Rd sech 2 2 z d z d H. T. Freudenreich, Astrophys. J. 492 , 495 (1998) - The dust layer: The distribution of the Interstellar Medium is assumed axisymmetric as well. T. M. Dame, AIP Conference Proceedings 278 (1993) 267. Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 6 / 25

  10. The underlying Galactic Model - The stellar bulge/bar: − s 2 � � � � ρ bb ( x , y , z ) = ρ bb ( 0 ) b + s − 1 . 85 exp ( − s a ) exp a 2 where �� x � y � z � 2 � 2 a = q 2 a ( x 2 + y 2 ) + z 2 � 2 � 4 s 2 s 2 b = + + . z 2 x b y b z b b H. Zhao, arXiv:astro-ph/9512064. Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 7 / 25

  11. The underlying Galactic Model - The Dark Matter halo: � R � ρ h ( R ) = ρ ′ f , a h where f is the Dark Matter profile. - M vir , and c vir as halo parameters: ρ ′ = ρ ′ ( M vir , c vir ) a h = a h ( M vir , c vir ) Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 8 / 25

  12. The underlying Galactic Model - The Dark Matter profile: f E ( x ) = exp � α E ( x α E − 1 ) � − 2 J.F. Navarro et al., MNRAS 349 (2004) 1039. A.W. Graham, D. Merritt, B. Moore, J. Diemand and B. Terzic, Astron. J. 132 (2006) 2701. f NFW ( x ) = 1 x ( 1 + x ) 2 J.F. Navarro, C.S. Frenk and S.D.M. White, Astrophys. J. 462 , 563 (1996); Astrophys. J. 490 , 493 (1997). f B ( x ) = 1 ( 1 + x ) ( 1 + x 2 ) . A. Burkert, Astrophys. J. 447 (1995) L25. Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 9 / 25

  13. The underlying Galactic Model Dark matter profiles 1e+07 Einasto NFW 1e+06 Burkert 100000 10000 Profiles [GeV/cm 3 ] 1000 100 10 1 0.1 0.01 0.001 0.0001 0.001 0.01 0.1 1 10 Galactocentric distance [Kpc] Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 10 / 25

  14. Parameter space Galactic components Parameters Disk Σ d R d Disk Bulge/bar ρ bb ( 0 ) Halo α E M vir Halo c vir Halo R 0 All components All components β ⋆ Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 11 / 25

  15. The experimental constraints Constraints: A + B = − ∂ Θ( R 0 ) - Oort’s constants: A − B = Θ 0 R 0 ; ∂ R - terminal velocities - total mean surface density within | z | < 1 . 1 kpc - local disk surface mass density - total mass inside 50 kpc and 100 kpc - l.s.r. velocity, proper motion and parallaxes distance of high mass star forming regions in the outer Galaxy - radial velocity dispersion of tracers from the SDSS - stellar motions around the massive black hole in the GC - peculiar motion of Sgr A ∗ Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 12 / 25

  16. The experimental constraints Constraints: A + B = − ∂ Θ( R 0 ) - Oort’s constants: A − B = Θ 0 R 0 ; ∂ R - terminal velocities - total mean surface density within | z | < 1 . 1 kpc - local disk surface mass density - total mass inside 50 kpc and 100 kpc - l.s.r. velocity, proper motion and parallaxes distance of high mass star forming regions in the outer Galaxy - radial velocity dispersion of tracers from the SDSS - stellar motions around the massive black hole in the GC - peculiar motion of Sgr A ∗ Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 12 / 25

  17. The experimental constraints: Radial velocity dispersions -The dataset: population of stars with distances up to ∼ 60 kpc from the Galactic center. The distances are accurate to ∼ 10 % and the radial velocity errors are less than 30 km s − 1 . -It is a strong constraint in the range 10 kpc � R � 60 kpc -To compare the data to the predictions: Jeans Equation � ∞ 1 r ( r ) = d ˜ r ˜ r 2 β ⋆ − 1 ρ ⋆ (˜ r )Θ 2 (˜ r ) σ 2 r 2 β ⋆ ρ ⋆ ( r ) r - where β ⋆ is the anisotropy parameter: β ⋆ ≡ 1 − σ 2 t /σ 2 r . Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 13 / 25

  18. The method: Bayesian approach Frequentist approach = ⇒ Maximum Likelihood     Parametric model   of the Galaxy    Bayesian approach = ⇒ Posterior probability density   - This work → Bayesian approach Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 14 / 25

  19. The method: Bayesian approach - Target: posterior pdf (Bayes’ theorem): p ( η | d ) = L ( d | η ) π ( η ) d = data ; η = parameters ; p ( d ) - Output: the mean and the variance with respect to p ( η | d ) of functions f ( η ) . - We will focus on f = η and f = ρ DM ( R 0 ) . Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 15 / 25

  20. The method: Markov Chain Monte Carlo - Monte Carlo expectation values: N − 1 � d η f ( η ) p ( η | d ) ≈ 1 f ( η ( t ) ) , � f ( η ) � = � N t = 0 where η ( t ) was sampled from p ( η | d ) . - Monte Carlo technics require a method to sample η ( t ) = ⇒ Markov chains. - Markov chains : p ( η ( 0 ) )   ⇒ η ( t ) distributed according to p ( η | d ) .  = T ( η ( t ) , η ( t + 1 ) ) Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 16 / 25

  21. Convergence of the Markov chains R ≡ (Scale reduction factor). Convergence: R < 1 . 1 and roughly constant. 1-R as a function of the iteration number: 0.14 disc central surface density bulge-bar central mass density disc radial scale Sun’s Galactocentric distance 0.12 halo virial mass concentration parameter anisotropy beta parameter Multivariate Scale Reduction Fatcor 0.1 0.08 0.06 0.04 0.02 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Iteration number Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 17 / 25

  22. Figure: Marginal posterior pdf of the Galactic model parameters (NFW profile). Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 18 / 25

  23. Figure: Marginal posterior pdf of the Galactic model parameters (Einasto profile). Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 19 / 25

  24. 9.5 9.5 25 9 9 20 8.5 8.5 R 0 [Kpc] R 0 [kpc] c vir 8 8 15 7.5 7.5 10 7 7 6.5 6.5 5 1 2 3 4 5 10 15 20 25 1 2 3 4 M vir [10 12 M Θ ] M vir [10 12 M Θ ] c vir 0 0.2 0.4 0.6 0.8 1 Figure: Two dimensional marginal posterior pdf in the planes spanned by combinations of the Galactic model parameters (NFW profile). Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 20 / 25

  25. 9.5 9.5 4 9 9 M vir [10 12 M Θ ] 3 8.5 8.5 R 0 [kpc] R 0 [kpc] 8 8 2 7.5 7.5 1 7 7 6.5 6.5 1 2 3 4 5 10 15 20 25 0.1 0.2 0.3 0.4 M vir [10 12 M Θ ] α E c vir 0.4 25 25 20 20 0.3 c vir c vir α E 15 15 0.2 10 10 5 5 0.1 1 2 3 4 0.1 0.2 0.3 0.4 7 8 9 M vir [10 12 M Θ ] α E R 0 [kpc] 0 0.2 0.4 0.6 0.8 1 Figure: Two dimensional marginal posterior pdf in the planes spanned by combinations of the Galactic model parameters (Einasto profile). Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 21 / 25

  26. Figure: Marginal posterior pdf for the local Dark Matter density. Top left panel: Einasto profile, applying different subsets of constraints. Top right panel: Einasto profile. Bottom left panel: NFW profile. Bottom right panel: Burkert profile. Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 22 / 25

  27. Numerical values - Numerically we find: ρ DM ( R 0 ) = ( 0 . 385 ± 0 . 027 ) GeV cm − 3 ( Einasto ) ρ DM ( R 0 ) = ( 0 . 389 ± 0 . 025 ) GeV cm − 3 ( NFW ) ρ DM ( R 0 ) = ( 0 . 409 ± 0 . 029 ) GeV cm − 3 ( Burkert ) - No strong dependences from the assumed halo profile. Riccardo Catena (ITP) Firenze (GGI) 17/05/2010 23 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend