implications of fi terms in orbifold compactifications
play

Implications of FI-Terms in Orbifold Compactifications Kai - PowerPoint PPT Presentation

Implications of FI-Terms in Orbifold Compactifications Kai Schmidt-Hoberg In Collaboration with W. Buchmller, R. Catena, P . Hosteins, R. Kappl and M. Ratz arXiv:0803.4501 , arXiv:0902.4512 arXiv:0905.3323 Grenoble October 7, 2009 K.


  1. Implications of FI-Terms in Orbifold Compactifications Kai Schmidt-Hoberg In Collaboration with W. Buchmüller, R. Catena, P . Hosteins, R. Kappl and M. Ratz arXiv:0803.4501 , arXiv:0902.4512 arXiv:0905.3323 Grenoble October 7, 2009 K. Schmidt-Hoberg (TUM) Grenoble Oct 7 1

  2. Introduction: SUSY GUTs in 4 Dimensions Doublet-triplet splitting problem Standard Model Higgs comes together with color triplet that leads to proton decay ⇒ must be very heavy Dimension-5 proton decay operators Decay too fast even if triplet mass is O ( M GUT ) Gauge symmetry breaking needs large Higgs representations µ problem µ parameter must be small to get correct EWSB SUSY flavour problem Squark and slepton mass matrices must be almost diagonal to avoid FCNCs ⇒ Supersymmetric Orbifold GUTs K. Schmidt-Hoberg (TUM) Grenoble Oct 7 2

  3. Introduction: Orbifold Compactification Starting point: higher-dimensional setup Simplest example: one extra dimension, compactified on circle Compactification scale: M c ≡ 1 / R ∼ M GUT Kaluza-Klein mode expansion: ∞ ∞ � ny � ny Φ ( n ) Φ ( n ) � � Φ( x , y ) = + ( x ) cos − ( x ) sin � � + R R n = 0 n = 1 � In 4D effective theory: Tower of states with masses n / R K. Schmidt-Hoberg (TUM) Grenoble Oct 7 3

  4. Introduction: Orbifold Compactification Starting point: higher-dimensional setup Z 2 : y → − y Simplest example: one extra dimension, compactified on circle Compactification scale: M c ≡ 1 / R ∼ M GUT Z 2 Kaluza-Klein mode expansion: ∞ ∞ � ny � ny Φ ( n ) Φ ( n ) � � Φ( x , y ) = + ( x ) cos − ( x ) sin � � + R R n = 0 n = 1 Z 2 � In 4D effective theory: Tower of states with masses n / R Impose symmetry Orbifold S 1 / π R 0 Fixed points = branes at 0, π R Fields can be localized there Fields either even or odd: Φ( x , y ) → ± Φ( x , − y ) − K. Schmidt-Hoberg (TUM) Grenoble Oct 7 3

  5. Introduction: Virtues of Orbifold GUTs Only even fields have zero modes ( n = 0 ⇒ massless) All odd fields are heavy (mass ∼ M c ) ⇒ Unwanted fields can be removed from low-energy spectrum K. Schmidt-Hoberg (TUM) Grenoble Oct 7 4

  6. Introduction: Virtues of Orbifold GUTs Only even fields have zero modes ( n = 0 ⇒ massless) All odd fields are heavy (mass ∼ M c ) ⇒ Unwanted fields can be removed from low-energy spectrum Higgs doublets even, triplets odd ⇒ doublet-triplet splitting Only SM gauge bosons even ⇒ gauge symmetry breaking without large Higgs representations No dimension-5 proton decay Hall, Nomura, Phys Rev D 64 (2001) Higher-dimensional supersymmetry broken to N = 1 SUSY ⇒ chiral fermions K. Schmidt-Hoberg (TUM) Grenoble Oct 7 4

  7. Overview Challenge: Size and Shape of the extra dimensions undetermined ⇒ Moduli problem Casimir energy induces a nontrivial potential Radiative corrections generically induce Fayet-Iliopoulos terms at the fixed points. Lee, Nilles, Zucker, Nucl.Phys.B 680 (2004) Buchmüller, Lüdeling, Schmidt, JHEP 0709 (2007) Combination of Casimir energy with FI-terms can lead to small extra dimensions ⇒ Part 1 Fayet-Iliopoulos-terms also have an important impact on couplings ⇒ Part 2 K. Schmidt-Hoberg (TUM) Grenoble Oct 7 5

  8. Outline Stabilisation of Extra Dimensions 1 Example: An Orbifold GUT Model Casimir Energy Stabilisation Gauge-Top Unification 2 GTU in GUTs String theory input Phenomenological implications K. Schmidt-Hoberg (TUM) Grenoble Oct 7 6

  9. Orbifold Compactification Starting point: higher-dimensional setup Here: two extra dimensions, compactified on a torus Torus specified by the volume A and shape τ A = L 1 L 2 sin θ L 2 τ = L 2 / L 1 e i θ L 1 θ K. Schmidt-Hoberg (TUM) Grenoble Oct 7 7

  10. Orbifold Compactification Starting point: higher-dimensional setup Here: two extra dimensions, compactified on a torus Z 2 : y → − y Torus specified by the volume A and shape τ ⇒ Impose symmetry Values for τ , A ? Casimir energy of bulk fields induces nontrivial potential Supersymmetry ⇒ vanishing Casimir energy ⇒ SUSY breaking K. Schmidt-Hoberg (TUM) Grenoble Oct 7 7

  11. Gaugino Mediation in a 6D Orbifold GUT Model Asaka, Buchmüller, Covi, Phys. Lett. B563 (2003) O GG [G ] O fl [G ] fl GG ψ 1 ψ 2 45 6 · 10 GG SM’ PS 4 · 16 SO(10) S ψ 3 O I [SO(10)] O PS [G ] PS Gaugino Mediation Kaplan, Kribs, Schmaltz, Phys. Rev. D62 (2000) Chacko, Luty, Nelson, Ponton, JHEP 01 (2000) In general: soft masses for all bulk fields Gaugino masses: m g = Scalar masses: m 2 H = − λ ′ µ 2 λµ Λ 2 A Λ 2 A K. Schmidt-Hoberg (TUM) Grenoble Oct 7 8

  12. Z 3 Z 2 symmetry Casimir Energy Consider one-loop Casimir energy of a real scalar field Geometry: T 2 / 2 Fields can be either even or odd wrt a Only fields which couple to SUSY breaking brane contribute Boundary conditions encoded in α, β ∈ { 0 , 1 / 2 } ⇒ Four different contributions, d 4 k E = 1 ��� ( α,β ) � � m , n + M 2 � V α,β k 2 E + M 2 ( 2 π ) 4 log M m , n 2 m , n = 4 ( 2 π ) 2 A τ 2 | n + β − τ ( m + α ) | 2 M 2 Zeta function regularisation K. Schmidt-Hoberg (TUM) Grenoble Oct 7 9

  13. Casimir Energy „ M M 6 A » 11 «– V α,β = + 12 − log M 3072 π 3 µ r „ M − M 4 » 3 «– 4 − log δ α 0 δ β 0 64 π 2 µ r − M 3 τ 3 / 2 ∞ cos ( 2 π p α ) √ “ ” K 3 p A M X 2 2 √ τ 2 p 3 4 π 3 A 1 / 2 p = 1 « 5 ∞ ∞ cos ( 2 π p ( β − ( m + α ) τ 1 )) 2 ( m + α ) 2 + A τ 2 M 2 32 1 „ 4 X X τ 2 − p 5 / 2 A 2 τ 2 2 δ α 0 δ m 0 ( 4 π ) 2 2 p = 1 m = 0 s 2 ( m + α ) 2 + A τ 2 M 2 ! K 5 / 2 2 π p τ 2 ( 4 π ) 2 Dependence on regularization scale µ r remnant of divergent bulk and brane cosmological terms K. Schmidt-Hoberg (TUM) Grenoble Oct 7 10

  14. Casimir Energy - Volume V V A (+ , +) (+ , − ) A 0 V V ( − , +) ( − , − ) A A 0 0 Sign and strength of Casimir force depends on boundary conditions General potential: a V (+ , +) + b V (+ , − ) + c V ( − , +) + d V ( − , − ) K. Schmidt-Hoberg (TUM) Grenoble Oct 7 11

  15. Casimir Energy Analytical behaviour for small volume with τ 1 and τ 2 in the minimum: 945 A 2 + π M 2 − 4 π 3 V ( 0 , 0 ) 360 A + O ( M 4 ) ( τ 1 = 1 2 , τ 2 = 1 2 , A ) ≃ M Contributions for bosons and fermions come with opposite sign ⇒ Leading term cancels within supermultiplet M 2 = M 2 SUSY + m 2 soft Leading term in supermultiplet ∝ m 2 soft K. Schmidt-Hoberg (TUM) Grenoble Oct 7 12

  16. Z ps Z GG Z ps Z GG Z ps Z GG Z ps Z GG Casimir Energy in the Orbifold GUT Model Can neglect contribution from vector multiplet → Hypermultiplets Example: H 3 and H 4 ( 1 , 2 ; − 1 ( 1 , 2 ; 1 ( 3 , 1 ; 1 ( 3 , 1 ; − 1 SM ′ 2 , − 2 ) 2 , 2 ) 3 , − 2 ) 3 , 2 ) 2 2 2 2 2 2 2 2 H 3 − + − − + + + − H 4 − − − + + − + + V H � V ( 0 , 0 ) − V ( 0 , 0 ) � � V ( 0 , 1 / 2 ) − V ( 0 , 1 / 2 ) � = 12 + 12 m H m H � − V ( 1 / 2 , 0 ) � � − V ( 1 / 2 , 1 / 2 ) � V ( 1 / 2 , 0 ) V ( 1 / 2 , 1 / 2 ) + 8 + 8 · m H m H µ 2 λ ′ − π ≃ 36 Λ 2 A 2 K. Schmidt-Hoberg (TUM) Grenoble Oct 7 13

  17. Casimir Energy in the Orbifold GUT Model Can neglect contribution from vector multiplet → Hypermultiplets Example: H 3 and H 4 V A ⇒ Can achieve repulsive force at short distances But: Need additional ingredient for stabilisation K. Schmidt-Hoberg (TUM) Grenoble Oct 7 13

  18. Breaking of U ( 1 ) X 4D gauge symmetry: G SM ′ = SU ( 3 ) c ⊗ SU ( 2 ) L ⊗ U ( 1 ) Y ⊗ U ( 1 ) X Vev � Φ � breaks the additional U ( 1 ) X ⇒ Bulk mass M ∼ g 6 � Φ � Quantum corrections generically induce Fayet-Iliopoulos terms at the fixed points Lee, Nilles, Zucker, Nucl.Phys.B 680 (2004) Buchmüller, Lüdeling, Schmidt, JHEP 0709 (2007) Localised FI terms can induce vev for bulk fields in turn D-flatness implies A� Φ � 2 ∼ C Λ 2 , C ≪ 1 K. Schmidt-Hoberg (TUM) Grenoble Oct 7 14

  19. Volume Stabilisation Classical contribution to the vacuum energy density V ( 0 ) = − λ ′′ � d 4 θ � S † S Φ † Φ � Λ 4 ≃ − λ ′′ µ 2 C A attractive for λ ′′ > 0 Combine with the repulsive Casimir energy Λ 2 A 2 − λ ′′ µ 2 C µ 2 λ ′ V tot = V ( 0 ) + V ( 1 ) = − π 36 A K. Schmidt-Hoberg (TUM) Grenoble Oct 7 15

  20. Volume Stabilisation V A Stable minimum at A min = − πλ ′ M 2 � 1 1 M 2 36 λ ′′ Independent of supersymmetry breaking scale µ 2 Cosmological constant has to be tuned to zero by a brane cosmological term K. Schmidt-Hoberg (TUM) Grenoble Oct 7 16

  21. Casimir Energy - Shape (+ , +) (+ , − ) ( − , +) ( − , − ) K. Schmidt-Hoberg (TUM) Grenoble Oct 7 17

  22. Z ⇒ SL ( 2 , Z ) Z ) Casimir Energy - Shape Casimir energy invariant under modular transformations τ → a τ + b ad − bc = 1 , c τ + d For boundary conditions (+ , +) a , b , c , d ∈ For other boundary conditions: subgroups of SL ( 2 , For a general potential: a , c = 1 mod 2 , b , d = 0 mod 2 ⇒ Γ( 2 ) Fundamental domain Τ 2 � 0,1 � � 1 � 2, ������ 3 � 2 � 0.5 1 Τ 1 � 1 � 0.5 0.5 K. Schmidt-Hoberg (TUM) Grenoble Oct 7 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend