resonance in iron neutron rich exotic
play

Resonance in Iron neutron rich exotic isotopes R.Avigo 1,2 A.Bracco - PowerPoint PPT Presentation

Investigation of Pygmy Dipole Resonance in Iron neutron rich exotic isotopes R.Avigo 1,2 A.Bracco 1,2 , O.Wieland 1 , F.Camera 1,2 on behalf of the AGATA collaborations 1 INFN sezione di Milano 2 Universit degli Studi di Milano Outlines


  1. Investigation of Pygmy Dipole Resonance in Iron neutron rich exotic isotopes R.Avigo 1,2 A.Bracco 1,2 , O.Wieland 1 , F.Camera 1,2 on behalf of the AGATA collaborations 1 INFN sezione di Milano 2 Università degli Studi di Milano

  2. Outlines Pygmy Dipole Resonance in neutron rich nuclei E1 strength investigation of 62,64 Fe nuclei with relativistic coulomb excitation PreSPEC-AGATA setup at GSI Experimental gamma ray spectra from 62,64 Fe Preliminary results Conclusions COMEX5 , Krakow, September 14 - 18, 2015

  3. Pygmy Dipole Resonance in neutron rich nuclei E1 strength response measured in neutron rich stable nuclei Accumulation of strength around and above neutron separation energy interpret as a collective motion called Pygmy Dipole Resonance (PDR) A. Zigles et al. Journ. of Phys. 580 (2015) 012052 Experimental effort over 40 years to investigate this strength accumulation in different mass region towards exotic nuclei P. Aldrich et al. PRL 95 (2005) 132501 COMEX5 , Krakow, September 14 - 18, 2015

  4. Pygmy Dipole Resonance in Iron This low energy region contribution of PDR has attracted interest and it was measured in different region of mass 62-64 Fe region OSLO experiment R. Massarczyk et al.,PRL 112, 072501 A. C. Larsen et al.,PRL 111,242504 (2013) COMEX5 , Krakow, September 14 - 18, 2015

  5. Iron isotopes Theoretical predictions show dipole strenght around 10 MeV and also below the threshold for 62,64 Fe For the first time E1 strength distribution below the threshold will be studied for exotic isotopes at varying of the neutron number 62 Fe:expected dipole strength 62 Fe Arb. Un. 80 40 Carbone - Colò COMEX5 , Krakow, September 14 - 18, 2015

  6. Relativistic coulomb excitation Relativistic coulomb excitation of Pygmy Dipole Strength High selectivity No neutron-threshold effect Pygmy Dipole Strength measured for the first time in exotic nuclei: 62,64 Fe coulomb excitation experiment in GSI virtual photon b>b min γ emission COMEX5 , Krakow, September 14 - 18, 2015

  7. PreSPEC-AGATA setup to investigate exotic nuclei FRS AGATA production and selection of exotic nuclei LYCCA selection of coulomb excitation events on secondary target AGATA – HECTOR EPJ Web of Conferences 66, 02083 (2014) Measurement of gamma decay of: first 2 + state High energy levels COMEX5 , Krakow, September 14 - 18, 2015

  8. PreSPEC-AGATA setup AGATA coupled with HECTOR allows to cover a wide angular range. This can be used to get informations on the multipolarity of gamma rays detected In addition backward scintillators can be used for the estimation of background AGATA From 15° to 60° 22 ° HECTOR 22°, 68°, 95°, 142° 68 ° 142 ° 95 ° COMEX5 , Krakow, September 14 - 18, 2015

  9. Relativistic coulomb excitation selection @ GSI Identification of beam of interest Z Identification of reaction ΔE (arb. Un.) A/Q products Scattering angle E (arb. Un.) mrad COMEX5 , Krakow, September 14 - 18, 2015

  10. Low energy spectra @ GSI  20 AGATA 64 Fe* 15 877 keV 746 keV 2 + @877 keV  g.s. 2 + @ 746 keV  g.s. Counts 10  5 GEANT GEAN 0 T 400 500 600 700 800 900 1000 1100 1200 1300 1400 E  [keV] 2 + 877 keV 2 + 746 keV Thick target and relativistic (440 MeV/nucl.) beam required a fine tuning of PreSPEC and AGATA detectors to observe 2 + state decay for both iron isotopes Ground State Ground State B(E2) of 2 + decay is known and it is used to provide a normalization for the cross section  essential to deduce B(E1) from the high energy γ -transition COMEX5 , Krakow, September 14 - 18, 2015

  11. High energy spectra 100 100 64 Fe* 62 Fe* AGATA AGATA Counts 10 Counts 10 1 1 4000 8000 12000 4000 8000 12000 E  [keV] E  [keV] Ratio E2 yield/E1 yield 1,80 1,70 Angular distribution was used 1,60 1,50 to deduce the E1 character of 1,40 the γ -ray data above 6 MeV. 1,30 1,20 1,10 1,00 expected 0,90 0,80 15 30 45 60 75 Θ (degree) COMEX5 , Krakow, September 14 - 18, 2015

  12.  yield in the pygmy region How would be the spectrum if the GDR response is pure lorentzian? Pure Lorentzian GDR shape and spectrum of virtual photons used to obtain excitation spectrum GDR Spectrum of lorentzian virtual photons shape Number of excitations COMEX5 , Krakow, September 14 - 18, 2015

  13.  yield in the pygmy region GEMINI code used to deduce de-excitation gamma yield from the excitation spectrum AGATA response function applied to de-excitation gamma yield COMEX5 , Krakow, September 14 - 18, 2015

  14. High energy spectra High energy spectra show statistics accumulations above the background (evaluated with backward angle LaBr) and the GDR tail contribution 64 Fe AGATA spectrum 62 Fe AGATA spectrum  yield from GDR  yield from GDR  yield from GDR+background  yield from GDR+background experimental data experimental data COMEX5 , Krakow, September 14 - 18, 2015

  15. Conclusions and Perspectives E1 strenght accumulation at one particle separation energy has attracted interest because it is relevant for both nuclear structure and astrophysics A lot of data available for stable nuclei, data about exotic nuclei very scarce E1 response just below the threshold is under investigation Measurement of E1 response of 64,62 Fe by relativistic coulomb scattering at GSI laboratories The advanced features of the setup allowed to collect interesting data for both Iron isotopes Gamma ray energy spectra show interesting structures over the GDR tail: the analysis showed the possibility to get an estimation of B(E1) value related to high energy  ray transitions COMEX5 , Krakow, September 14 - 18, 2015

  16. Special thanks to all AGATA - PreSPEC collaboration: O. Wieland, R. Avigo, A. Bracco, F. Camera, S. Ceruti, G. Benzoni, N. Blasi, S. Brambilla, F.C.L. Crespi, S. Leoni, B.Million, A. Morales, L. Pellegri, A. Giaz et al., Università degli Studi di Milano and INFN, Sezione di Milano, Italy A. Maj, M. Kmiecik, P. Bednarczyk, J. Grebosz , M. Kmiecik,M. Krzysiek et al., The Niewodniczanski Institute of Nuclear Physics, PAN, Krakow, Poland G. de Angelis, D.R. Napoli, et al., INFN, Laboratori Nazionali di Legnaro, Italy D. Bazzacco, E. Farnea, S.M. Lenzi, S. Lunardi, et al., Dip. di Fisica and INFN, Sezione di Padova, Italy J. Gerl, M. Gorska, H.J. Wollersheim, T. Aumann, N. Pietralla, P. Boutachkov, G. Guastalla, E.Gregor, N. Goel,F. Ameil, P. Singh, A. Ghivechev, M. Reese, D. Ralet, N. Lalovic, S. Pietri, M. Lettman, R. Stegmann, T. Arici, L. Cortes, Ch. Bauer, Th. Moller, A. Ghivechev, C.Sthal, H. Schnaffer, I. Khojouharov et al., TU Darmstadt and GSI, Germany G. Duchene, F. Didierjean IPHC Strasbourg K. Moschner, P. Thole University of Cologne D. RudolphP. Golubev University of Lund Z. Podolyak, T. Alexander University of Surrey A. Gadea, T. Huyuk, R. Perez Universidat de Valencia G. Rainovsky University of Sofia K. Kezzar King Saud University COMEX5 , Krakow, September 14 - 18, 2015

  17. Thank you for your kind attention

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend