resistive wall impedance of interaction regions
play

Resistive-wall impedance of interaction regions (warm beam pipe) 12 - PowerPoint PPT Presentation

Resistive-wall impedance of interaction regions (warm beam pipe) 12 Bernard Riemann Zentrum fr Synchrotronstrahlung 2017-10-10 EuroCirCol meeting 1 thanks to S. Arsenyev, A. Langner, O. Boine-Frankenheim, D. Schulte and S. Khan 2 supported by


  1. Resistive-wall impedance of interaction regions (warm beam pipe) 12 Bernard Riemann Zentrum für Synchrotronstrahlung 2017-10-10 EuroCirCol meeting 1 thanks to S. Arsenyev, A. Langner, O. Boine-Frankenheim, D. Schulte and S. Khan 2 supported by German Federal Ministry of Education and Research, funding code 05P15PERB1 1 / 1

  2. Transverse impedance model Preface: Tune shif a a thanks to O. Boine-Frankenheim Transverse tune shif, a proportionality ∆ ν y = Ω − ω β ∝ β y I ˜ Z ⊥ / E . ω 0 Normalize such that β y ( s ) = 1 case is equivalent to impedance Z ⊥ of harmonic oscillator with frequency ∫ 1 1 2 π Q = β ( s ) d s = : . β smooth a A. Chao, ”Physics of Collective Beam Instabilities in High Energy Accelerators“, chapter 4 2 / 1

  3. Transverse impedance model Use single-kick model 3 for elements n of a latice: 1 � β ⊥ ( s n ) ˜ Z ⊥ = Z ⊥ , n β smooth ⊥ n round pipe, radius b � 2 ρ n 1 + i Z ⊥ , n = L n Z 0 δ skin with δ skin ˜ = n n 2 π b 3 µ 0 µ r ω n elliptical pipe with semiaxes w , b : Use form factors G 1 ⊥ ( w , b ) 45 1 + i ˜ Z ⊥ , n = L n G 1 ⊥ ( w n , b n ) Z 0 δ skin 2 π b 3 n 3 N. Mounet, PhD thesis, EPFL Lausanne (2012) 4 R.L. Gluckstern, J. van Zeijts and B. Zoter, Phys. Rev. E 47 (1992) 5 K. Yokoya, Part. Acc. 41 (1993), p. 18 – 19 3 / 1

  4. Transverse impedance model √ ρ n Z 0 1 + i � Z ⊥ = √ 2 µ 0 µ r ω L n β ⊥ ( s n ) G 1 ⊥ ( w n , b n ) b 3 πβ smooth n ⊥ n assume G 1 ⊥ , ρ, b as piece-wise constant, but β as continous: √ ρ n s n Z 0 1 + i ∫ � Z ⊥ = √ 2 µ 0 µ r ω G 1 ⊥ ( w n , b n ) β ⊥ ( s ) d s πβ smooth b 3 n ⊥ n s n − 1 β, α = − β ′ / 2 known at all element endpoints s n 4 / 1

  5. Transverse impedance model Qadrature rule Assume β is piece-wise cubic function of s : L ∫ β ( s ) d s ≈ L β ( L ) + β ( 0 ) + L 2 α ( L ) − α ( 0 ) . 2 6 0 Approximation is exact for drif spaces (quadratic dependence). Result Z ⊥ = ζ 1 + i , with � f √ ρ n s n Z 0 ∫ � ζ = G 1 ⊥ ( w n , b n ) β ⊥ ( s ) d s . √ πµ 0 µ r b 3 2 πβ smooth n ⊥ n s n − 1 5 / 1

  6. Longitudinal impedance model Different dependence on b and f , 6 assumption of piece-wise constant values is valid for all factors: Result � Z ⊥ = α ( 1 + i ) f , with √ ρ n G 0 ( w n , b n ) � α = Z 0 π � L n . 2 π c µ 0 µ r b n n 6 A. Chao, Physics of Collective Instabilities in Particle Accelerators (Wiley, 2003) 6 / 1

  7. Computation results Used aperture and optics data from 8 IRs as input. 7 Collision optics with β ∗ = 0 . 3 m at 50 TeV beam energy. Used resistivities of copper 8 at 50 K for magnets (elements QUADRUPOLE, RBEND, SBEND, HKICKER, VKICKER ) ρ ( 50 K ) = 0 . 518 n Ω m respectively 293 K for drif spaces ρ ( 293 K ) = 16 . 78 n Ω m . other latice elements ignored (no treatment of collimators etc.) 7 thanks to S. Arsenyev and A. Langner 8 R.A. Matula, “Electrical Resistivity of Copper, Gold, Palladium, and Silver”, Table 2, J. Phys. Chem. Ref. Data 8 (4) (1979) 7 / 1

  8. Total impedance regions A, B, D, F, G, H, J, L 10 4 10 10 10 10 10 3 10 9 10 9 10 2 y impedance / Ω x impedance / Ω 10 8 10 8 l impedance / Ω 10 1 10 7 10 7 10 0 10 6 10 6 10 − 1 Re Z x (cold beamscreen, factor 1.24) Re Z y (cold beamscreen, factor 2.28) Re Z l (cold beamscreen, factor 6.36) 10 5 10 5 Im Z y (cold beamscreen, factor 2.28) Im Z x (cold beamscreen, factor 1.24) Im Z l (cold beamscreen, factor 6.36) Re,Im Z x warm pipe ( ζ /u = 18.9) Re,Im Z y warm pipe ( ζ /u = 19.0) 10 − 2 Re,Im Z l warm pipe ( α /u = 11.5) 10 2 10 4 10 6 10 8 10 10 10 2 10 4 10 6 10 8 10 10 10 2 10 4 10 6 10 8 10 10 f / Hz f / Hz f / Hz Transverse plane: strong contribution relative to cold beamscreen reference data. 9 9 S. Arsenyev, FCC impedance online database, https://impedance.web.cern.ch/impedance/fcchh 8 / 1

  9. Major transverse contributions from IRA / IRG ζ / ( M Ω √ IRA MHz / m ) α / ( Ω /√ MHz ) elements x plane y plane 7 . 190 7 . 118 1 . 007 drifs 0 . 168 0 . 236 0 . 064 quads 0 . 379 0 . 372 0 . 024 dipoles 0 . 082 0 . 080 0 . 010 kickers 7 . 818 7 . 806 1 . 106 total region IRA, input parameters region IRA, impedance coefficients 8 80 x x MHz / m ) y y 6 60 √ β / km c.s. of ζ / ( M Ω 40 4 2 20 0 0 10 50 K 1 . 0 293 K MHz ) 5 0 . 8 √ b , w / cm c.s. of α / ( Ω / 0 . 6 0 0 . 4 − 5 0 . 2 − 10 0 . 0 96 . 2 96 . 4 96 . 6 96 . 8 97 . 0 97 . 2 97 . 4 97 . 6 97 . 8 96 . 2 96 . 4 96 . 6 96 . 8 97 . 0 97 . 2 97 . 4 97 . 6 97 . 8 s / km s / km 9 / 1

  10. Major transverse contributions from IRA / IRG ζ / ( M Ω √ IRG MHz / m ) α / ( Ω /√ MHz ) elements x plane y plane 7 . 190 7 . 118 1 . 007 drifs 0 . 168 0 . 236 0 . 064 quads 0 . 379 0 . 372 0 . 024 dipoles 0 . 082 0 . 080 0 . 010 kickers 7 . 818 7 . 806 1 . 106 total region IRG, input parameters region IRG, impedance coefficients 8 80 x x MHz / m ) y y 6 60 √ β / km c.s. of ζ / ( M Ω 40 4 2 20 0 0 10 50 K 1 . 0 293 K MHz ) 5 0 . 8 √ b , w / cm c.s. of α / ( Ω / 0 . 6 0 0 . 4 − 5 0 . 2 − 10 0 . 0 47 . 4 47 . 6 47 . 8 48 . 0 48 . 2 48 . 4 48 . 6 48 . 8 47 . 4 47 . 6 47 . 8 48 . 0 48 . 2 48 . 4 48 . 6 48 . 8 s / km s / km 10 / 1

  11. Minor transverse contributions from IRD, IRJ ζ / ( M Ω √ IRD MHz / m ) α / ( Ω /√ MHz ) elements x plane y plane 1 . 281 1 . 264 2 . 292 drifs 0 . 004 0 . 004 0 . 011 quads 0 . 000 0 . 000 0 . 000 dipoles 0 . 000 0 . 000 0 . 000 kickers 1 . 285 1 . 268 2 . 304 total region IRD, input parameters region IRD, impedance coefficients 1 . 25 x x MHz / m ) 4 y y 1 . 00 3 √ β / km 0 . 75 c.s. of ζ / ( M Ω 2 0 . 50 1 0 . 25 0 0 . 00 4 2 . 0 MHz ) 2 √ 1 . 5 b , w / cm c.s. of α / ( Ω / 0 1 . 0 − 2 50 K 0 . 5 293 K − 4 0 . 0 22 . 5 23 . 0 23 . 5 24 . 0 24 . 5 25 . 0 22 . 5 23 . 0 23 . 5 24 . 0 24 . 5 25 . 0 s / km s / km 11 / 1

  12. Minor transverse contributions from IRD, IRJ ζ / ( M Ω √ IRJ MHz / m ) α / ( Ω /√ MHz ) elements x plane y plane 0 . 659 0 . 647 2 . 104 drifs 0 . 179 0 . 175 0 . 186 quads 0 . 010 0 . 030 0 . 031 dipoles 0 . 000 0 . 000 0 . 000 kickers 0 . 848 0 . 852 2 . 321 total region IRJ, input parameters region IRJ, impedance coefficients 2 . 0 x x 0 . 8 MHz / m ) y y 1 . 5 0 . 6 √ β / km c.s. of ζ / ( M Ω 1 . 0 0 . 4 0 . 5 0 . 2 0 . 0 0 . 0 4 2 . 0 MHz ) 2 √ 1 . 5 b , w / cm c.s. of α / ( Ω / 0 1 . 0 − 2 50 K 0 . 5 293 K − 4 0 . 0 71 . 5 72 . 0 72 . 5 73 . 0 73 . 5 74 . 0 71 . 5 72 . 0 72 . 5 73 . 0 73 . 5 74 . 0 s / km s / km 12 / 1

  13. Influence of IR apertures in IRA / IRG region IRA, input parameters region IRA, impedance coefficients 8 80 x x MHz / m ) y y 6 60 x, modified y, modified √ β / km c.s. of ζ / ( M Ω 40 4 2 20 0 0 10 50 K 1 . 0 293 K MHz ) 5 0 . 8 √ b , w / cm c.s. of α / ( Ω / 0 . 6 0 0 . 4 − 5 0 . 2 − 10 0 . 0 96 . 2 96 . 4 96 . 6 96 . 8 97 . 0 97 . 2 97 . 4 97 . 6 97 . 8 96 . 2 96 . 4 96 . 6 96 . 8 97 . 0 97 . 2 97 . 4 97 . 6 97 . 8 s / km s / km Strong influence by scaling law ∝ √ ρβ / b 3 from high-beta drif spaces. 13 / 1

  14. Influence of IR apertures in IRA / IRG 15 MHz / m ) 10 √ ζ / ( M Ω IRA+IRG (x) all regions (x) 5 IRA+IRG (y) all regions (y) 0 10 MHz ) 8 IRA+IRG (long.) √ 6 α / ( Ω / all regions (long.) 4 2 0 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 6 . 5 7 . 0 radius of IRA/IRG drif space / cm Significant reduction of transverse impedance possible by enlarging the aforementioned apertures. 14 / 1

  15. Sneak peek: Injection optics region IRA, input parameters region IRA, impedance coefficients x x 0 . 4 4 MHz / m ) y y 0 . 3 3 √ β / km c.s. of ζ / ( M Ω 0 . 2 2 1 0 . 1 0 0 . 0 1 . 0 50 K 293 K 5 MHz ) 0 . 8 √ b , w / cm 0 . 6 c.s. of α / ( Ω / 0 0 . 4 − 5 0 . 2 0 . 0 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 s / km s / km ⇒ Current task: repeat computation for 3 . 3 TeV injection optics. factor 20 in β , Z values 15 / 1

  16. Summary Transverse and longitudinal resistive-wall impedance contributions of major warm parts have been computed for collision optics at 50 TeV with β ∗ = 0 . 3 m. Overall impedance of warm parts is of approx. equal magnitude to that of cold beamscreen. Major contributions from room-temperature drif spaces in IRA / IRG, which can be removed by aperture increase. Next tasks ⇒ Re-evaluate computation with modified aperture dimensions (further input welcome) Tank you for your atention! 16 / 1

  17. Backup slides IRB ζ / ( M Ω √ IRB MHz / m ) α / ( Ω /√ MHz ) elements x plane y plane 0 . 252 0 . 184 1 . 033 drifs 0 . 121 0 . 115 0 . 075 quads 0 . 015 0 . 014 0 . 024 dipoles 0 . 035 0 . 033 0 . 027 kickers 0 . 423 0 . 346 1 . 159 total region IRB, input parameters region IRB, impedance coefficients 3 x 0 . 4 x MHz / m ) y y 0 . 3 2 √ β / km c.s. of ζ / ( M Ω 0 . 2 1 0 . 1 0 0 . 0 4 1 . 00 MHz ) 2 √ 0 . 75 b , w / cm c.s. of α / ( Ω / 0 0 . 50 − 2 50 K 0 . 25 − 4 293 K 0 . 00 4 . 2 4 . 4 4 . 6 4 . 8 5 . 0 5 . 2 5 . 4 4 . 2 4 . 4 4 . 6 4 . 8 5 . 0 5 . 2 5 . 4 s / km s / km 17 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend