reservoir induced topological order quantized transport
play

Reservoir-induced topological order & quantized transport in - PowerPoint PPT Presentation

Reservoir-induced topological order & quantized transport in open systems Michael Fleischhauer & Dominik Linzner Dept. of Physics & research center OPTIMAS Technische Universitt Kaiserslautern Bad Honnef 09.05.2016 picture:


  1. Reservoir-induced topological order & quantized transport in open systems Michael Fleischhauer & Dominik Linzner Dept. of Physics & research center OPTIMAS Technische Universität Kaiserslautern Bad Honnef 09.05.2016 picture: wikipedia

  2. topological states exo$c quantum states topological protec$on Abelian & non-Abelian anyons protected edge states & edge transport but: in general no protection against losses

  3. topological order in the steady state of an open system ??

  4. open-system dynamics open dynamics drives the system to a steady state steady state: attractor

  5. robustness of the steady state d d t ρ = L ρ L ρ λ = − λ ρ λ gapped open systems Re[ λ ] damping gap λ = 0 parameter space

  6. outline • topological invariants & open systems • Su-Schrieffer-Heeger model & Thouless pump • quantized topological transport in open spin chain with interactions • detection of topological invariant

  7. outline • topological invariants & open systems • Su-Schrieffer-Heeger model & Thouless pump • quantized topological transport in open spin chain with interactions • detection of topological invariant

  8. outline • topological invariants & open systems • Su-Schrieffer-Heeger model & Thouless pump • quantized topological transport in open spin chain with interactions • detection of topological invariant

  9. outline • topological invariants & open systems • Su-Schrieffer-Heeger model & Thouless pump • quantized topological transport in open spin chain with interactions • detection of topological invariant

  10. topological invariants & open systems

  11. topology Möbius strip: locally indistinguishable

  12. topology Möbius strip: differ by global properties !

  13. topological invariants: geometric phases a Zak (Berry) phase Z π /a x 0 dk h u k | i ∂ k | u k i φ Zak = Zak PRL (1989) − π /a Zak = φ Zak + 2 π k i = e ikx 0 | u k i | u 0 φ 0 choice of origin matters a x 0 Chern number C = i Z Z n o d 2 k h ∂ k y u k | ∂ k x u k i � h ∂ k x u k | ∂ k y u k i ∈ Z 2 π BZ no global gauge C 6 = 0

  14. geometric phases for density matrices Uhlmann connection ρ = w w † gauge degree of freedom: U(N) w † → U † w † w → w U O. Viyuela, et al. Phys. Rev. Lett. (2014) Z. Huang, D. P. Arovas, Phys. Rev. Lett. (2014) U(1) Uhlmann phase I e i φ = w ∂ λ w † ⇤ ⇥ d λ Tr

  15. Berry phases for density matrices J. C. Budich, S. Diehl 1501.04135: X d j ( k ) ˆ H ( k ) = σ j finite-T state of a Chern insulator j d 1 = sin( k x ) d 2 = 3 sin( k y ) d 3 = 1 − cos( k x ) − cos( k y ) k y k x f U f U φ ( k y ) φ ( k x ) 3 3 2 2 1 1 3 k y 3 k x - 3 - 2 - 1 1 2 - 3 - 2 - 1 1 2 - 1 - 1 - 2 - 2 - 3 - 3 C = 1 ✓ ∂φ ( k y ) ◆ 6 = C 0 = 1 ✓ ∂φ ( k x ) ◆ Z Z dk y dk x 2 π 2 π ∂ k y ∂ k x Furthermore without constraints: trivial global gauge w = √ ρ

  16. non-interacting fermions C.E. Bardyn, et al. New J. Phys (2013) Gaussian systems c ( † ) X c † H = h ij ˆ c j i ˆ L j ∼ α ˆ j + β ˆ c j ij covariance matrix � c † ρ w i w j } Γ jk ∼ Im Tr c i ± ˆ w i ∼ ˆ i density matrix ⇢ � − i 2 w j Γ jk w k ρ ∼ exp

  17. non-interacting fermions topological classification in terms of Γ ij ✓ ◆ γ 11 γ 12 ∼ (1 + ~ n ( k ) · ~ � ) γ ( k ) = γ 21 γ 22 topological phase transition (I) closing of the damping gap (criticality) (II) closing of the purity gap = gap of effective Hamiltonian ⇢ � − i X 2 w j Γ jk w k ρ ∼ exp H e ff = i Γ jk w j w k jk � beyond Gaussian systems ??

  18. polarization Thouless, Kohmoto, Nightingale, den Nijs (TKNN) PRL (1982) topology �� �� quantized bulk transport Zak phase & Polarization King-Smith, Vanderbilt PRB (1983) w ( x ) Z P = dx w ∗ ( x ) x w ( x ) ∆ P = a 2 π ∆ φ Zak

  19. quantization of Hall conductance x Z 2 π /a C = 1 dk y ∂ k y φ Zak ( k y ) 2 π ~ 0 E y dk y = E y dt σ xy = j x = dP = dP 1 = C E y dt E y dk y

  20. Su-Schrieffer-Heeger model & Thouless pump Su, Schrieffer, Heeger, PRL (1979) D.J. Thouless, PRB (1983) Attala et al. (I. Bloch), Nature Physics (2013)

  21. SSH Model: free fermions on a superlattice with inversion symmetry t 2 t 1 X c † X c † H = − t 1 c i ˆ i +1 − t 2 c i ˆ i +1 + h.a. ˆ ˆ even odd E g ∼ t 1 − t 2 à half filling = band insulator of lower sub-band

  22. SSH � Rice Mele Hamiltonian X ! X c † X c † c † X c † H = − t 1 c i +1 − t 2 c i +1 + ∆ c i − c i h.a. ˆ i ˆ ˆ i ˆ ˆ i ˆ ˆ i ˆ even even odd odd Inversion symmeric SSH symmetry breaking term M.J. Rice & E.J. Mele, PRL(1982) topological t 1 = t 2 phase transition φ Zak = π φ Zak = 0 locally indistinguishable

  23. Rice-Mele Hamiltonian breaking inversion symmetry & Thouless pump X ! X c † X c † c † X c † c i +1 + ∆ H = − t 1 c i +1 − t 2 c i − c i h.a. ˆ i ˆ ˆ i ˆ ˆ i ˆ ˆ i ˆ even even odd odd

  24. Rice-Mele Hamiltonian breaking inversion symmetry & Thouless pump X ! X c † X c † c † X c † c i +1 + ∆ H = − t 1 c i +1 − t 2 c i − c i h.a. ˆ i ˆ ˆ i ˆ ˆ i ˆ ˆ i ˆ even even odd odd

  25. Rice-Mele Hamiltonian breaking inversion symmetry & Thouless pump X ! X c † X c † c † X c † c i +1 + ∆ H = − t 1 c i +1 − t 2 c i − c i h.a. ˆ i ˆ ˆ i ˆ ˆ i ˆ ˆ i ˆ even even odd odd

  26. Rice-Mele Hamiltonian breaking inversion symmetry & Thouless pump X ! X c † X c † c † X c † c i +1 + ∆ H = − t 1 c i +1 − t 2 c i − c i h.a. ˆ i ˆ ˆ i ˆ ˆ i ˆ ˆ i ˆ even even odd odd ∆ P = a 2 π ∆ φ Zak

  27. quantized topological transport in an open spin chain D. Linzner, F. Grusdt, M. Fleischhauer, arxiv:1605.00756

  28. model L A j j − 1 j j + 1 L B j ⇣ ⌘ X j ρ L µ † j − L µ † j ρ − ρ L µ † 2 L µ j L µ j L µ ρ = L ρ = ˙ j j,µ Lindblad generators h ⇣ ⌘ ⇣ ⌘i √ L A σ + σ + j = 1 + ε (1 − λ ) σ L,j + ˆ ˆ + (1 + λ ) ˆ L,j + ˆ σ R,j R,j h ⇣ ⌘ ⇣ ⌘i √ L B σ + σ + j = 1 − ε (1 − λ ) σ L,j +1 + ˆ ˆ + (1 + λ ) ˆ L,j +1 + ˆ σ R,j R,j

  29. model action of Lindblad generators h ⇣ ⌘ ⇣ ⌘i √ L A σ + σ + j = 1 + ε (1 − λ ) σ L,j + ˆ ˆ + (1 + λ ) ˆ L,j + ˆ σ R,j R,j h ⇣ ⌘ ⇣ ⌘i √ L B σ + σ + j = 1 − ε (1 − λ ) σ L,j +1 + ˆ ˆ + (1 + λ ) ˆ L,j +1 + ˆ σ R,j R,j λ = +1 λ = − 1 j j + 1 j j + 1

  30. symmetries L A j j − 1 j j + 1 L B j h ⇣ ⌘ ⇣ ⌘i √ L A σ + σ + j = 1 + ε (1 − λ ) σ L,j + ˆ ˆ + (1 + λ ) ˆ L,j + ˆ σ R,j R,j h ⇣ ⌘ ⇣ ⌘i √ L B σ + σ + j = 1 − ε (1 − λ ) σ L,j +1 + ˆ ˆ + (1 + λ ) ˆ L,j +1 + ˆ σ R,j R,j particle-hole symmetry h σ z R i + h σ z σ z R → − σ z L i = 0 L σ z j → − σ z h σ z j i = 0 λ = 0 j inversion symmetry ε = 0 or λ = 0

  31. steady-state Thouless pump polarization in finite system with PBC R. Resta PRL 80 , 1800 (1998) ⌧ o� P = 1 i 2 π n X 2 π Im ln exp j ˆ n j L j j j + 1

  32. steady-state Thouless pump periodic cycle in parameter space λ ( ii ) 1 steady state is a pure state (dark state) ( iii ) ε ( i ) − 1 ( iv ) 1 − 1 ✓ 1 ◆ λ P = ⌥ 1 2 + 1 + λ 2 2

  33. steady-state Thouless pump periodic cycle in parameter space 1 / 2 − 1 / 2 winding !!

  34. steady-state Thouless pump X L † H = µ L µ parent Hamiltonian µ ⇣ ⌘ ⇣ ⌘ X X σ + σ + σ + σ + H = − t 1 ˆ R,j + t 2 ˆ R,j + h.a. + ∆ σ − L,j ˆ σ − L,j +1 ˆ ˆ L,j ˆ L,j − ˆ R,j ˆ σ − σ − R,j j j t 1 = 2 Γ (1 + ε )(1 − λ 2 ) t 2 = 2 Γ (1 − ε )(1 − λ 2 ) ∆ = 8 Γ λ = Rice-Mele Hamiltonian: winding à quantized bulk transport topological invariant = Zak phase / Chern number ∆ P = a 2 π ∆ φ Zak

  35. steady-state Thouless pump λ inner part of parameter space 1 L µ = L † λ = 0 µ ε ⇣ ⌘ X 2 L µ j ρ L µ † j − L µ † j L µ j ρ − ρ L µ † j L µ ρ = L ρ = ˙ − 1 j j,µ − 1 1 totally mixed state is also steady state ! à lift degeneracy by (generic) nonlinear term ⇣ ⌘ p L A j → L A σ + σ + j + Γ (1 + ε ) ˆ L,j ˆ R,j − ˆ L,j ˆ σ − σ − R,j ⇣ ⌘ p L B → L B σ + σ + j + Γ (1 − ε ) ˆ L,j +1 ˆ R,j − ˆ L,j +1 ˆ σ − σ − j R,j

  36. steady-state Thouless pump TEBD simulations in inner part of parameter space Zak phase undefined winding defines topological invariant

  37. robustness

  38. robustness Hamiltonian disorder homogeneous local losses λ ε robust to disorder and losses

  39. symmetry protected topological order

  40. symmetry-protected topology inversion symmetric axes ε = 0 λ = 0 polarization constant & jumps at sigularity

  41. symmetry-protected topology Inversion symmetry λ = 0 1/4 0 P -1/4 -1 0 1 P λ =0 ( ε ) = P λ =0 ( − ε ) + 1 " 2 1 x + < R,j x ) 2 i h ( < L,j 0.9 h σ z j i = 0 x + < R,j-1 x ) 2 i h ( < L,j 0.8 0.7 0.6 0.5 0.4 0.3 -1 -0.5 0 0.5 1 "

  42. topological singularity

  43. topological singularity

  44. damping spectrum (4 sites) ρ ν ( t ) = ρ ν (0) e − ν t L ρ ν = − νρ ν Re[ ν ] no closing of damping gap

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend