renormalization group trajectories between two fixed
play

RENORMALIZATION GROUP TRAJECTORIES BETWEEN TWO FIXED POINTS - PowerPoint PPT Presentation

RENORMALIZATION GROUP TRAJECTORIES BETWEEN TWO FIXED POINTS Abdelmalek Abdesselam University of Virginia, Department of Mathematics ICMP Prague, Aug 7, 2009 Main reference: A. A. CMP 07 Main reference: A. A. CMP 07 Outline: 1.


  1. RENORMALIZATION GROUP TRAJECTORIES BETWEEN TWO FIXED POINTS Abdelmalek Abdesselam University of Virginia, Department of Mathematics ICMP Prague, Aug 7, 2009

  2. ◮ Main reference: A. A. CMP 07’

  3. ◮ Main reference: A. A. CMP 07’ ◮ Outline: 1. Global dynamics of Wilson’s RG 2. Rigorous results (selection) 3. The BMS model 4. Good infinite-volume coordinates 5. Idea of the proof 6. Functional analysis, norms 7. Perspectives

  4. 1. Global Dynamics of Wilson’s Renormalization Group:

  5. 1. Global Dynamics of Wilson’s Renormalization Group: QFT functional integrals: a challenge for mathematicians

  6. 1. Global Dynamics of Wilson’s Renormalization Group: QFT functional integrals: a challenge for mathematicians e. g., the φ 4 model � � R d [ 1 2 ( ∇ φ ) 2 ( x )+ µφ ( x ) 2 + g φ ( x ) 4 ] dx D φ · · · e − F

  7. 1. Global Dynamics of Wilson’s Renormalization Group: QFT functional integrals: a challenge for mathematicians e. g., the φ 4 model � � R d [ 1 2 ( ∇ φ ) 2 ( x )+ µφ ( x ) 2 + g φ ( x ) 4 ] dx D φ · · · e − F F infinite-dimensional space of functions R d → R D φ Lebesgue measure on F

  8. ◮ Construction by scaling limit of lattice theories on ( a Z ) d ⊂ R d ⇐ ⇒ cut-off 1 a on momenta in Fourier space ◮ rescale to unit lattice ◮ approximants to continuum theory = points in the space of all possible unit cut-off theories

  9. ◮ Construction by scaling limit of lattice theories on ( a Z ) d ⊂ R d ⇐ ⇒ cut-off 1 a on momenta in Fourier space ◮ rescale to unit lattice ◮ approximants to continuum theory = points in the space of all possible unit cut-off theories ◮ RG = dynamical system on this space

  10. ◮ Construction by scaling limit of lattice theories on ( a Z ) d ⊂ R d ⇐ ⇒ cut-off 1 a on momenta in Fourier space ◮ rescale to unit lattice ◮ approximants to continuum theory = points in the space of all possible unit cut-off theories ◮ RG = dynamical system on this space ◮ d ν measure on random φ with ˆ φ ( p ) = 0 if | p | > 1 ◮ introduce magnification ratio L > 1 ◮ split φ = ζ + φ low ⇒ L − 1 < | p | ≤ 1 ζ ⇐ ⇒ | p | ≤ L − 1 φ low ⇐

  11. ◮ integrate over ζ − → marginal probability distribution on φ low ◮ rescale ψ ( x ) = L [ φ ] φ low ( Lx ) − → measure d ν ′

  12. ◮ integrate over ζ − → marginal probability distribution on φ low ◮ rescale ψ ( x ) = L [ φ ] φ low ( Lx ) − → measure d ν ′ ◮ RG map: d ν − → d ν ′

  13. ◮ integrate over ζ − → marginal probability distribution on φ low ◮ rescale ψ ( x ) = L [ φ ] φ low ( Lx ) − → measure d ν ′ ◮ RG map: d ν − → d ν ′ Important features: fixed points, eigenvalues of linearized RG around them, local stable & unstable manifolds. . .

  14. ◮ integrate over ζ − → marginal probability distribution on φ low ◮ rescale ψ ( x ) = L [ φ ] φ low ( Lx ) − → measure d ν ′ ◮ RG map: d ν − → d ν ′ Important features: fixed points, eigenvalues of linearized RG around them, local stable & unstable manifolds. . . Local features

  15. ◮ integrate over ζ − → marginal probability distribution on φ low ◮ rescale ψ ( x ) = L [ φ ] φ low ( Lx ) − → measure d ν ′ ◮ RG map: d ν − → d ν ′ Important features: fixed points, eigenvalues of linearized RG around them, local stable & unstable manifolds. . . Local features Global features ? e. g. heteroclinic trajectories between fixed points

  16. 2. Rigorous Results (Selection):

  17. 2. Rigorous Results (Selection): Local: ◮ RG exponents for Gaussian fixed point, ∃ nontrivial IR fp in “4 − ǫ ” dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73’, 75’, Collet-Eckmann CMP 77’, LNP 78’, Gaw¸ edzki-Kupiainen CMP 83’, JSP 84’, Pereira JMP 93’ ◮ HM at ǫ = 1: Koch-Wittwer CMP 86’ 2 ◮ new fps at d = 2 + n − 1 , n = 3 , 4 , . . . in LPA: Felder CMP 95’

  18. 2. Rigorous Results (Selection): Local: ◮ RG exponents for Gaussian fixed point, ∃ nontrivial IR fp in “4 − ǫ ” dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73’, 75’, Collet-Eckmann CMP 77’, LNP 78’, Gaw¸ edzki-Kupiainen CMP 83’, JSP 84’, Pereira JMP 93’ ◮ HM at ǫ = 1: Koch-Wittwer CMP 86’ 2 ◮ new fps at d = 2 + n − 1 , n = 3 , 4 , . . . in LPA: Felder CMP 95’ ◮ Euclidean model in “4 − ǫ ” dimensions, ∃ nontrivial IR fp and local stable manifold: Brydges-Dimock-Hurd CMP 98’ ◮ Same for nicer model: Brydges-Mitter-Scoppola CMP 03’

  19. 2. Rigorous Results (Selection): Local: ◮ RG exponents for Gaussian fixed point, ∃ nontrivial IR fp in “4 − ǫ ” dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73’, 75’, Collet-Eckmann CMP 77’, LNP 78’, Gaw¸ edzki-Kupiainen CMP 83’, JSP 84’, Pereira JMP 93’ ◮ HM at ǫ = 1: Koch-Wittwer CMP 86’ 2 ◮ new fps at d = 2 + n − 1 , n = 3 , 4 , . . . in LPA: Felder CMP 95’ ◮ Euclidean model in “4 − ǫ ” dimensions, ∃ nontrivial IR fp and local stable manifold: Brydges-Dimock-Hurd CMP 98’ ◮ Same for nicer model: Brydges-Mitter-Scoppola CMP 03’ Global: ◮ uniqueness of IR fp in LPA for 3 ≤ d < 4: Lima CMP 87’ ◮ Massless GN in “2 + ǫ ” dim: Gaw¸ edski-Kupiainen NPB 85’

  20. 2. Rigorous Results (Selection): Local: ◮ RG exponents for Gaussian fixed point, ∃ nontrivial IR fp in “4 − ǫ ” dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73’, 75’, Collet-Eckmann CMP 77’, LNP 78’, Gaw¸ edzki-Kupiainen CMP 83’, JSP 84’, Pereira JMP 93’ ◮ HM at ǫ = 1: Koch-Wittwer CMP 86’ 2 ◮ new fps at d = 2 + n − 1 , n = 3 , 4 , . . . in LPA: Felder CMP 95’ ◮ Euclidean model in “4 − ǫ ” dimensions, ∃ nontrivial IR fp and local stable manifold: Brydges-Dimock-Hurd CMP 98’ ◮ Same for nicer model: Brydges-Mitter-Scoppola CMP 03’ Global: ◮ uniqueness of IR fp in LPA for 3 ≤ d < 4: Lima CMP 87’ ◮ Massless GN in “2 + ǫ ” dim: Gaw¸ edski-Kupiainen NPB 85’ ◮ BMS model, construction of discrete heteroclinic trajectories joining Gaussian UV fp to nontrivial IR fp: A. A. CMP 07’

  21. 3. The BMS Model:

  22. 3. The BMS Model: Scalar field φ : R 3 − → R potential V ( φ ) � � �� � 3+ ǫ D φ e − 1 � 2 � φ, ( − ∆) 4 φ � L 2( R 3) dx ( µ : φ 2 ( x ):+ g : φ 4 ( x ):) − Z = � �� � Gaussian measure

  23. 3. The BMS Model: Scalar field φ : R 3 − → R potential V ( φ ) � � �� � 3+ ǫ D φ e − 1 � 2 � φ, ( − ∆) 4 φ � L 2( R 3) dx ( µ : φ 2 ( x ):+ g : φ 4 ( x ):) − Z = � �� � Gaussian measure ◮ propagator ( − ∆) − 3+ ǫ 1 4 ( x , y ) ∼ | x − y | 2[ φ ] ◮ [ φ ] = 3 − ǫ 4 � ∞ � x − y l l − 2[ φ ] u � dl ◮ propagator ∼ 0 l ◮ u finite range, smooth, and nonnegative in x and p � ∞ � x − y l l − 2[ φ ] u � dl ◮ unit cut-off C ( x − y ) = 1 l

  24. ◮ split C ( x − y ) = Γ( x − y ) + C L − 1 ( x − y ) with C L − 1 ( x − y ) = L − 2[ φ ] C ( L − 1 ( x − y )) and � L � x − y � dl l l − 2[ φ ] u Γ( x − y ) = l 1 ◮ convolution d µ C = d µ Γ ⋆ d µ C L − 1 � � Z = d µ C ( φ ) Z ( φ ) = d µ C L − 1 ( ψ ) d µ Γ ( ζ ) Z ( ψ + ζ ) � = d µ C ( φ ) ( RZ )( φ ) � d µ Γ ( ζ ) Z ( φ L − 1 + ζ ) and φ L − 1 ( x ) = L − [ φ ] φ ( L − 1 x ) ( RZ )( φ ) =

  25. ◮ split C ( x − y ) = Γ( x − y ) + C L − 1 ( x − y ) with C L − 1 ( x − y ) = L − 2[ φ ] C ( L − 1 ( x − y )) and � L � x − y � dl l l − 2[ φ ] u Γ( x − y ) = l 1 ◮ convolution d µ C = d µ Γ ⋆ d µ C L − 1 � � Z = d µ C ( φ ) Z ( φ ) = d µ C L − 1 ( ψ ) d µ Γ ( ζ ) Z ( ψ + ζ ) � = d µ C ( φ ) ( RZ )( φ ) � d µ Γ ( ζ ) Z ( φ L − 1 + ζ ) and φ L − 1 ( x ) = L − [ φ ] φ ( L − 1 x ) ( RZ )( φ ) = RG map: Z − → RZ

  26. 4. Good Infinite-Volume Coordinates: Brydges et al. Z 3 ⊂ R 3 = ⇒ cell decomposition X polymer

  27. In finite box Λ Z (Λ , φ ) = � � ∞ � 1 � � dx { g : φ 4 ( x ) : C + µ : φ 2 ( x ) : C } exp − n ! Λ \ ( ∪ X i ) n =0 X 1 ,..., Xn disjoint in Λ × K ( X 1 , φ | X 1 ) · · · K ( X n , φ | X n ) ◮ Z ← → ( g , µ, K ) ◮ K = ( K ( X , · )) X polymer collection of local functionals

  28. In finite box Λ Z (Λ , φ ) = � � ∞ � 1 � � dx { g : φ 4 ( x ) : C + µ : φ 2 ( x ) : C } exp − n ! Λ \ ( ∪ X i ) n =0 X 1 ,..., Xn disjoint in Λ × K ( X 1 , φ | X 1 ) · · · K ( X n , φ | X n ) ◮ Z ← → ( g , µ, K ) ◮ K = ( K ( X , · )) X polymer collection of local functionals ◮ need to extract second order perturbation theory: K ( X , φ ) = g 2 [ explicit complicated formula ] e − V ( X ,φ ) + R ( X , φ ) ◮ R of order g 3

  29. In finite box Λ Z (Λ , φ ) = � � ∞ � 1 � � dx { g : φ 4 ( x ) : C + µ : φ 2 ( x ) : C } exp − n ! Λ \ ( ∪ X i ) n =0 X 1 ,..., Xn disjoint in Λ × K ( X 1 , φ | X 1 ) · · · K ( X n , φ | X n ) ◮ Z ← → ( g , µ, K ) ◮ K = ( K ( X , · )) X polymer collection of local functionals ◮ need to extract second order perturbation theory: K ( X , φ ) = g 2 [ explicit complicated formula ] e − V ( X ,φ ) + R ( X , φ ) ◮ R of order g 3 → ( g ′ , µ ′ , R ′ ) ◮ RG map: ( g , µ, R ) −

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend