relativistic dynamics of slow highly charged ions
play

Relativistic dynamics of (slow) highly-charged ions Stephan - PowerPoint PPT Presentation

Relativistic dynamics of (slow) highly-charged ions Stephan Fritzsche GSI Darmstadt & Oulu University Eisenach, 28 th June 2010 electron-photon electron-electron interaction interaction Thanks to: N.M. Kabachnik, A. Surzhykov, T.


  1. Relativistic dynamics of (slow) highly-charged ions Stephan Fritzsche GSI Darmstadt & Oulu University Eisenach, 28 th June 2010 electron-photon electron-electron interaction interaction Thanks to: N.M. Kabachnik, A. Surzhykov, T. Stöhlker and GSI Atomic Physics Group

  2. Highly-charged ions provide a unique tool -- for probing strong electro-magnetic fields ultra-strong E ≈ 1 0 1 6 V / c m E ≈ 1 0 1 6 V / c m I n t e n s e L a s e r

  3. Highly-charged ions provide a unique tool -- for probing strong electro-magnetic fields 1s-Lamb Shift ultra-strong Experiment: 459.8 eV ± 4.6 eV Theory: 463.95 eV E ≈ 1 0 1 6 V / c m E ≈ 1 0 1 6 V / c m 2p 3/2 2s 1/2 Ly α 1 (E1) 2p 1/2 M1 Ly α 2 (E1) 1s 1/2 I n t e n s e L a s e r Decelerated Ions: 520 (our exp. Lamb Shift [eV] ) Cooler 510 U 91+ Gasjet 500 Theory Cooler 490 480 Decelerated 470 460 Ions: Jet 450 440 430 420 1990 1992 1994 1996 1998 2000 2002 Year A. Gumberidze et al., PRL 94 (2005) 223001

  4. Highly-charged ions provide a unique tool -- for probing strong electro-magnetic fields ultra-strong ultra-short 1  = E ≈ 1 0 1 6 V / c m E ≈ 1 0 1 6 V / c m  1 − v / c  2 I n t e n s e L a s e r t ≤ t ≤ 0 . 1 a s 0 . 1 a s I ≈ 1 0 2 1 W I ≈ 1 0 2 1 W 2 2 / c m / c m In contrast to: few-cycle laser pulses decelerated ion beams, HITRAP

  5. Relativistic dynamics of (slow) highly-charged ions Stephan Fritzsche GSI Darmstadt & Oulu University Eisenach, 28 th June 2010 electron-photon electron-electron interaction interaction Plan of this talk Electron capture: angular correlations & polarization Multipole mixing in strong fields Two-step processes: Capture vs. excitation Thanks to: N.M. Kabachnik, A. Surzhykov, T. Stöhlker and GSI Atomic Physics Group Atomic PNC: Two-photon processes Spectroscopy of (super-) heavy elements Conclusions

  6. Electron capture by bare ions -- angular correlation and polarization studies

  7. Electron capture into bare high-Z ions ~ ∑ polarization ∫ d ∣ M ∣ 2 So far... total cross sections d  d  ~ ∑ 2 ∣ M ∣ polarization angular distributions

  8. Electron capture into bare high-Z ions ~ ∑ polarization ∫ d ∣ M ∣ 2 So far... total cross sections d  d  ~ ∑ 2 ∣ M ∣ polarization angular distributions New directions ... polarization ~ ∣ M ∣ 2 No summation over Alignment studies polarization states !

  9. Multipole mixing of the radiation field -- in the capture and decay of highly-charged ions

  10. Capture into the 2p 3/2 excited states of initially bare ions Magnetic sublevel population of the residual ion can not be measured directly Lyman- α 1 But: knowledge on population of excited ion state may be derived from the properties of subsequent decay 2p 3/2 1s 1/2  angular distribution (arb. units) U 91+ fitting anisotropy parameter T p = 310 MeV/u W ∝ 1   P 2  cos  beam energy (MeV/u) observation angle (deg) J. Eichler et al. PRA 58 (1998) 2128 Th. Stöhlker et al. PRL 79 (1997) 3270

  11. Capture into the 2p 3/2 excited states of initially bare ions Magnetic sublevel population of the residual ion can not be measured directly Lyman- α 1 But: knowledge on population of excited ion state may be derived from the properties of subsequent decay 2p 3/2 1s 1/2  angular distribution (arb. units) U 91+ fitting anisotropy parameter T p = 310 MeV/u W ∝ 1   P 2  cos  Theory:   b =± 3 / 2 −  b =± 1 / 2 = 1 2   b =± 3 / 2   b =± 1 / 2  alignment of the 2p 3/2 state: relative sublevel | j b m b > population beam energy (MeV/u) observation angle (deg) J. Eichler et al. PRA 58 (1998) 2128 Th. Stöhlker et al. PRL 79 (1997) 3270

  12. Effective anisotropy parameter: Multipole contributions W ∝ 1  eff P 2  cos  effective anisotropy parameter  ± 3 / 2 − ± 1 / 2   eff = 1  f  E1 , M2   2  ± 3 / 2  ± 1 / 2  structure function alignment parameter f  E1 , M2 ∝ 1  2  3 〈∣ M2 ∣〉 〈∣ E1 ∣〉 P 1 ~ | φ | 2 2p 3/2 E1 M2 1s 1/2 P 12 = | φ 1 + φ 2 | 2 Double slit screen

  13. Effective anisotropy parameter: Multipole contributions W ∝ 1  eff P 2  cos  effective anisotropy parameter  ± 3 / 2 − ± 1 / 2   eff = 1  f  E1 , M2   2  ± 3 / 2  ± 1 / 2  structure function alignment parameter f  E1 , M2 ∝ 1  2  3 〈∣ M2 ∣〉 〈∣ E1 ∣〉 2p 3/2 E1 M2 1s 1/2

  14. Effective anisotropy parameter: Multipole contributions W ∝ 1  eff P 2  cos  effective anisotropy parameter  ± 3 / 2 − ± 1 / 2   eff = 1  f  E1 , M2   2  ± 3 / 2  ± 1 / 2  structure function alignment parameter f  E1 , M2 ∝ 1  2  3 〈∣ M2 ∣〉 〈∣ E1 ∣〉 2p 3/2 In contrast, contributions to decay rates appear additive: E1 M2  M2 2 ∝ ∣〈∣ M2 ∣〉∣ ∝ 0.008 1s 1/2  tot ∣〈∣ E1 ∣〉∣ 2 even for U 91+

  15. E1-M2 multipole mixing: Alignment of the 2p 3/2 state A. Surzhykov et al. PRL 88 (2002) 153001 W ∝ 1  eff P 2  cos  angular distribution (arb. units) U 91+ T p = 310 MeV/u fitti  eff ng effective anisotropy parameter observation angle (deg) beam energy (MeV/u) Dynamical alignment studies enables one to explore magnetic interactions in the bound-bound transitions in H-like ions !

  16. Two-photon coincidence studies Normal (independent) measurement Coincidence measurement Photon-photon correlation functions: ? W  RR ,  =

  17. Two-photon coincidence studies Normal (independent) measurement Coincidence measurement Photon-photon correlation functions: W  RR ,  ∝ 1   4  5 ∑ A 2q  RR  Y 2q  Lengthy derivation in the framework of the density matrix theory. q t n n U 91+ o e i m t u θ RR = 0 deg n b g i r i t l a s i d l a r i θ RR = 15 deg θ RR = 0 deg t a n l e u g r θ RR = 15 deg e n θ RR = 90 deg f a f i d θ RR = 90 deg observation angle θ RR observation angle θ

  18. X-ray polarimetry for HCI -- exploring a new `dimension' in the electron-photon interaction position sensitive detector U92+ gas jet ion beam K-shell capture or subsequent decay S. Tachenov, G. Weber, T. Stöhlker, a.o.

  19. Linear polarization of emitted x-ray photons -- theoretical expectation photoionization recombination electric dipole approximation Linear polarization is described in the plane, perpendicular to the photon momentum. only 2 (Stokes) parameters are required ! P 1 P L =  P 1 cos  2 = 2  P 2 2 P L

  20. Linear polarization of emitted x-ray photons -- Statistical characteristics for photon ensembles photoionization recombination P 1 = I 0 − I 90 I 0  I 90 electric dipole approximation photoelectron angular distribution: W PI ∝ sin 2  cos 2  photoelectrons are emitted predominantly within the plane of the electric field Stobbe, Ann. Phys. 5 (1930) 661

  21. Linear polarization of emitted x-ray photons -- Statistical characteristics for photon ensembles photoionization recombination electric dipole approximation Relativistic effects decrease the linear polarization ! U 92+ 100 MeV/u Cross-over behaviour !! 300 MeV/u 500 MeV/u F. Sauter, Ann. Phys. 9 (1931) 217 800 MeV/u U. Fano, Phys. Rev. 116 (1959) 1156 A. Surzhykov et al , PLA 289 (2001) 213 J. Eichler et al , PRA 65 (2002) 052716

  22. Linear polarization of emitted x-ray photons: Applications -- Diagnostics of highly-charged ion beams P roposal: to use REC linear polarization as a probe for ion spin polarization. Established theory from the “polarization transfer” in atomic photoionization. U. Fano et al. , Phys. Rev. 116 (1959) 1147; R. Pratt et al. , Phys. Rev. 134 (1964) A916.

  23. Linear polarization of emitted x-ray photons: Applications -- Diagnostics of highly-charged ion beams P roposal: to use REC linear polarization as a probe for ion spin polarization. Established theory from the “polarization transfer” in atomic photoionization. U. Fano et al. , Phys. Rev. 116 (1959) 1147; R. Pratt et al. , Phys. Rev. 134 (1964) A916. Calculations performed for the REC into (initially) hydrogen-like bismuth Bi 82+ ions ( I = 9/2) for the energy T p = 420 MeV/u. λ F = 0.0 P 2 = I 45 − I 135 λ F = 0.3 I 45  I 135 λ F = 0.7 P 1 = I 0 − I 90 λ F = 1.0 I 0  I 90

  24. Linear polarization of emitted x-ray photons: Applications -- Diagnostics of highly-charged ion beams P roposal: to use REC linear polarization as a probe for ion spin polarization. Established theory from the “polarization transfer” in atomic photoionization. U. Fano et al. , Phys. Rev. 116 (1959) 1147; R. Pratt et al. , Phys. Rev. 134 (1964) A916. Calculations performed for the REC into (initially) hydrogen-like bismuth Bi 82+ ions ( I = 9/2) for the energy T p = 420 MeV/u. P 2 tan  2 = P 1 direction of polarization A. Surzhykov et al. , Phys. Rev. Lett. 94 (2005) 203202

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend