regularity structures and renormalisation of fitzhugh
play

Regularity structures and renormalisation of FitzHughNagumo SPDEs - PowerPoint PPT Presentation

Eighth Workshop on Random Dynamical Systems Regularity structures and renormalisation of FitzHughNagumo SPDEs in three space dimensions Nils Berglund MAPMO, Universit e dOrl eans Bielefeld, 5 November 2015 with Christian Kuehn (TU


  1. Eighth Workshop on Random Dynamical Systems Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions Nils Berglund MAPMO, Universit´ e d’Orl´ eans Bielefeld, 5 November 2015 with Christian Kuehn (TU Vienna) Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/

  2. FitzHugh–Nagumo SDE d u t = [ u t − u 3 t + v t ] d t + σ d W t d v t = ε [ a − u t − bv t ] d t ⊲ u t : membrane potential of neuron ⊲ v t : gating variable (proportion of open ion channels) − u t v ε = 0 . 1 b = 0 1 a = 3 + 0 . 02 √ u t σ = 0 . 03 Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 1/15

  3. FitzHugh–Nagumo SPDE ∂ t u = ∆ u + u − u 3 + v + ξ ∂ t v = a 1 u + a 2 v ⊲ u = u ( t , x ) ∈ R , v = v ( t , x ) ∈ R (or R n ), ( t , x ) ∈ D = R + × T d , d = 2 , 3 � � ⊲ ξ ( t , x ) Gaussian space-time white noise: E ξ ( t , x ) ξ ( s , y ) = δ ( t − s ) δ ( x − y ) ξ : distribution defined by � ξ, ϕ � = W ϕ , { W h } h ∈ L 2 ( D ) , E [ W h W h ′ ] = � h , h ′ � (Link to simulation) Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 2/15

  4. Main result Mollified noise: ξ ε = ̺ ε ∗ ξ � t � 1 ε 2 , x where ̺ ε ( t , x ) = ε d +2 ̺ with ̺ compactly supported, integral 1 ε Theorem [NB & C. Kuehn, preprint 2015, arXiv/1504.02953 ] There exists a choice of renormalisation constant C ( ε ), lim ε → 0 C ( ε ) = ∞ , such that ∂ t u ε = ∆ u ε + [1 + C ( ε )] u ε − ( u ε ) 3 + v ε + ξ ε ∂ t v ε = a 1 u ε + a 2 v ε admits a sequence of local solutions ( u ε , v ε ), converging in probability to a limit ( u , v ) as ε → 0. ⊲ Local solution means up to a random possible explosion time ⊲ Initial conditions should be in appropriate H¨ older spaces ⊲ C ( ε ) ≍ log( ε − 1 ) for d = 2 and C ( ε ) ≍ ε − 1 for d = 3 ⊲ Similar results for more general cubic nonlinearity and v ∈ R n Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 3/15

  5. Main result Mollified noise: ξ ε = ̺ ε ∗ ξ � t � 1 ε 2 , x where ̺ ε ( t , x ) = ε d +2 ̺ with ̺ compactly supported, integral 1 ε Theorem [NB & C. Kuehn, preprint 2015, arXiv/1504.02953 ] There exists a choice of renormalisation constant C ( ε ), lim ε → 0 C ( ε ) = ∞ , such that ∂ t u ε = ∆ u ε + [1 + C ( ε )] u ε − ( u ε ) 3 + v ε + ξ ε ∂ t v ε = a 1 u ε + a 2 v ε admits a sequence of local solutions ( u ε , v ε ), converging in probability to a limit ( u , v ) as ε → 0. ⊲ Local solution means up to a random possible explosion time ⊲ Initial conditions should be in appropriate H¨ older spaces ⊲ C ( ε ) ≍ log( ε − 1 ) for d = 2 and C ( ε ) ≍ ε − 1 for d = 3 ⊲ Similar results for more general cubic nonlinearity and v ∈ R n Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 3/15

  6. Mild solutions of SPDE ∂ t u = ∆ u + F ( u ) + ξ u (0 , x ) = u 0 ( x ) Construction of mild solution via Duhamel formula: � G ( t , x − y ) u 0 ( y ) d y = (e ∆ t u 0 )( x ) ⊲ ∂ t u = ∆ u ⇒ u ( t , x ) = where G ( t , x ): heat kernel (compatible with bc) � t u ( t , x ) = (e ∆ t u 0 )( x ) + e ∆( t − s ) f ( s , · )( x ) d s ⊲ ∂ t u = ∆ u + f ⇒ 0 Notation: u = Gu 0 + G ∗ f ⊲ ∂ t u = ∆ u + ξ ⇒ u = Gu 0 + G ∗ ξ (stochastic convolution) ⊲ ∂ t u = ∆ u + ξ + F ( u ) ⇒ u = Gu 0 + G ∗ [ ξ + F ( u )] Aim: use Banach’s fixed-point theorem — but which function space? Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 4/15

  7. Mild solutions of SPDE ∂ t u = ∆ u + F ( u ) + ξ u (0 , x ) = u 0 ( x ) Construction of mild solution via Duhamel formula: � G ( t , x − y ) u 0 ( y ) d y =: (e ∆ t u 0 )( x ) ⊲ ∂ t u = ∆ u ⇒ u ( t , x ) = where G ( t , x ): heat kernel (compatible with bc) � t u ( t , x ) = (e ∆ t u 0 )( x ) + e ∆( t − s ) f ( s , · )( x ) d s ⊲ ∂ t u = ∆ u + f ⇒ 0 Notation: u = Gu 0 + G ∗ f ⊲ ∂ t u = ∆ u + ξ ⇒ u = Gu 0 + G ∗ ξ (stochastic convolution) ⊲ ∂ t u = ∆ u + ξ + F ( u ) ⇒ u = Gu 0 + G ∗ [ ξ + F ( u )] Aim: use Banach’s fixed-point theorem — but which function space? Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 4/15

  8. Mild solutions of SPDE ∂ t u = ∆ u + F ( u ) + ξ u (0 , x ) = u 0 ( x ) Construction of mild solution via Duhamel formula: � G ( t , x − y ) u 0 ( y ) d y =: (e ∆ t u 0 )( x ) ⊲ ∂ t u = ∆ u ⇒ u ( t , x ) = where G ( t , x ): heat kernel (compatible with bc) � t u ( t , x ) = (e ∆ t u 0 )( x ) + e ∆( t − s ) f ( s , · )( x ) d s ⊲ ∂ t u = ∆ u + f ⇒ 0 Notation: u = Gu 0 + G ∗ f ⊲ ∂ t u = ∆ u + ξ ⇒ u = Gu 0 + G ∗ ξ (stochastic convolution) ⊲ ∂ t u = ∆ u + ξ + F ( u ) ⇒ u = Gu 0 + G ∗ [ ξ + F ( u )] Aim: use Banach’s fixed-point theorem — but which function space? Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 4/15

  9. Mild solutions of SPDE ∂ t u = ∆ u + F ( u ) + ξ u (0 , x ) = u 0 ( x ) Construction of mild solution via Duhamel formula: � G ( t , x − y ) u 0 ( y ) d y =: (e ∆ t u 0 )( x ) ⊲ ∂ t u = ∆ u ⇒ u ( t , x ) = where G ( t , x ): heat kernel (compatible with bc) � t u ( t , x ) = (e ∆ t u 0 )( x ) + e ∆( t − s ) f ( s , · )( x ) d s ⊲ ∂ t u = ∆ u + f ⇒ 0 Notation: u = Gu 0 + G ∗ f ⊲ ∂ t u = ∆ u + ξ ⇒ u = Gu 0 + G ∗ ξ (stochastic convolution) ⊲ ∂ t u = ∆ u + ξ + F ( u ) ⇒ u = Gu 0 + G ∗ [ ξ + F ( u )] Aim: use Banach’s fixed-point theorem — but which function space? Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 4/15

  10. Mild solutions of SPDE ∂ t u = ∆ u + F ( u ) + ξ u (0 , x ) = u 0 ( x ) Construction of mild solution via Duhamel formula: � G ( t , x − y ) u 0 ( y ) d y =: (e ∆ t u 0 )( x ) ⊲ ∂ t u = ∆ u ⇒ u ( t , x ) = where G ( t , x ): heat kernel (compatible with bc) � t u ( t , x ) = (e ∆ t u 0 )( x ) + e ∆( t − s ) f ( s , · )( x ) d s ⊲ ∂ t u = ∆ u + f ⇒ 0 Notation: u = Gu 0 + G ∗ f ⊲ ∂ t u = ∆ u + ξ ⇒ u = Gu 0 + G ∗ ξ (stochastic convolution) ⊲ ∂ t u = ∆ u + ξ + F ( u ) ⇒ u = Gu 0 + G ∗ [ ξ + F ( u )] Aim: use Banach’s fixed-point theorem — but which function space? Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 4/15

  11. H¨ older spaces Definition of C α for f : I → R , with I ⊂ R a compact interval: ⊲ 0 < α < 1: | f ( x ) − f ( y ) | � C | x − y | α ∀ x � = y ⊲ α > 1: f ∈ C ⌊ α ⌋ and f ′ ∈ C α − 1 ⊲ α < 0: f distribution, |� f , η δ x �| � C δ α x ( y ) = 1 δ η ( x − y where η δ δ ) for all test functions η ∈ C −⌊ α ⌋ f ′ ∈ C α − 1 where � f ′ , η � = −� f , η ′ � Property: f ∈ C α , 0 < α < 1 ⇒ Remark: f ∈ C 1+ α �⇒ | f ( x ) − f ( y ) | � C | x − y | 1+ α . See e.g f ( x ) = x + | x | 3 / 2 Case of the heat kernel: ( ∂ t − ∆) u = f ⇒ u = G ∗ f → | t − s | 1 / 2 + � d Parabolic scaling: | x − y | − i =1 | x i − y i | δ η ( x − y δ 2 , x − y Parabolic scaling: 1 δ d +2 η ( t − s 1 δ ) − → δ ) Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 5/15

  12. H¨ older spaces Definition of C α for f : I → R , with I ⊂ R a compact interval: ⊲ 0 < α < 1: | f ( x ) − f ( y ) | � C | x − y | α ∀ x � = y ⊲ α > 1: f ∈ C ⌊ α ⌋ and f ′ ∈ C α − 1 ⊲ α < 0: f distribution, |� f , η δ x �| � C δ α x ( y ) = 1 δ η ( x − y where η δ δ ) for all test functions η ∈ C −⌊ α ⌋ f ′ ∈ C α − 1 where � f ′ , η � = −� f , η ′ � Property: f ∈ C α , 0 < α < 1 ⇒ Remark: f ∈ C 1+ α �⇒ | f ( x ) − f ( y ) | � C | x − y | 1+ α . See e.g f ( x ) = x + | x | 3 / 2 Case of the heat kernel: ( ∂ t − ∆) u = f ⇒ u = G ∗ f → | t − s | 1 / 2 + � d Parabolic scaling C α s : | x − y | − i =1 | x i − y i | δ η ( x − y δ 2 , x − y Parabolic scaling C α s : 1 δ d +2 η ( t − s 1 δ ) − → δ ) Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 5/15

  13. Schauder estimates and fixed-point equation Schauder estimate ∈ Z , f ∈ C α G ∗ f ∈ C α +2 ⇒ α / s s s a.s. ∀ α < − d +2 Fact : in dimension d , space-time white noise ξ ∈ C α 2 Fixed-point equation: u = Gu 0 + G ∗ [ ξ + F ( u )] ⊲ d = 1: ξ ∈ C − 3 / 2 − ⇒ G ∗ ξ ∈ C 1 / 2 − ⇒ F ( u ) defined s s ⊲ d = 3: ξ ∈ C − 5 / 2 − ⇒ G ∗ ξ ∈ C − 1 / 2 − ⇒ F ( u ) not defined s s ⊲ d = 2: ξ ∈ C − 2 − ⇒ G ∗ ξ ∈ C 0 − ⇒ F ( u ) not defined s s Boundary case, can be treated with Besov spaces [Da Prato and Debussche 2003] Why not use mollified noise? Limit ε → 0 does not exist Regularity structures and renormalisation of FitzHugh–Nagumo SPDEs in three space dimensions 5 November 2015 6/15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend